Поиск по сайту
Начало >> Книги >> Архивы >> Электроматериаловедение

Проводниковые материалы с большим удельным сопротивлением - Электроматериаловедение

Оглавление
Электроматериаловедение
Строение металлических проводниковых материков
Свойства металлов
Факторы, влияющие на свойства проводников
Проводниковая медь и сплавы
Проводниковый алюминий
Проводниковые железо
Свинец
Благородные металлы
Тугоплавкие металлы в электротехнике
Проводниковые материалы с большим удельным сопротивлением
Обмоточные провода
Монтажные провода
Установочные провода
Кабели
Магнитные материалы
Магнитно-мягкие материалы
Магнитно-твердые материалы
Диэлектрики
Способы измерения электрических характеристик диэлектриков
Характеристики электроизоляционных материалов
Газообразные диэлектрики
Жидкие диэлектрики
Очистка, сушка и регенерация электроизоляционных масел
Синтетические жидкие диэлектрики
Твердые органические диэлектрики
Поликонденсационные органические диэлектрики
Природные электроизоляционные смолы
Нагревостойкие высокополимерные диэлектрики
Пленочные электроизоляционные материалы
Электроизоляционные лаки
Электроизоляционные эмали
Воскообразные диэлектрики
Термопластичные компаунды
Термореактивные компаунды
Электроизоляционные бумаги, картоны, фибра, волокнистые материалы
Текстильные электроизоляционные материалы
Электроизоляционные лакоткани
Электроизоляционные пластмассы
Свойства и области применения пластмасс
Слоистые электроизоляционные пластмассы
Древеснослоистые пластмассы и намотанные изделия
Электроизоляционные резины
Электроизоляционная слюда
Миканиты
Микафолий и микалента
Слюдинитовые и слюдопластовые электроизоляционные материалы
Керамика
Фарфоровые изоляторы
Стекло и стеклянные изоляторы
Характеристики изоляторов
Конденсаторные керамические материалы
Сегнетокерамика
Минеральные диэлектрики
Полупроводниковые материалы
Полупроводниковые материалы и изделия
Основные полупроводниковые изделия
Электроугольные изделия
Припои и клеи

ГЛАВА III.
ПРОВОДНИКОВЫЕ МАТЕРИАЛЫ С БОЛЬШИМ УДЕЛЬНЫМ СОПРОТИВЛЕНИЕМ
§ 14. Общие требования
В. ряде случаев от проводниковых материалов требуется высокое удельное сопротивление и малый температурный коэффициент сопротивления. Перечисленными свойствами обладают сплавы на основе меди, никеля и марганца, а также других металлов. Из чистых металлов сюда следует отнести ртуть, так как она обладает большим удельным сопротивлением (q = 0,94 ом-мм2/м) . Наибольшее применение имеют проводниковые сплавы с большим удельным сопротивлением (q = 0,42—0,52 ом-мм2/м). Проволока и ленты из этих сплавов применяются для изготовления точных (образцовых) сопротивлений, пусковых и регулирующих реостатов, электронагревательных приборов и электрических печей сопротивления. В каждом из перечисленных случаев применения эти сплавы должны иметь дополнительные свойства, определяемые назначением прибора, в котором он используется. Так, сплавы, применяемые для изготовления точных сопротивлений, должны еще обладать малой термоэлектродвижущей силой (термо-э. д. с.) при контакте (в паре) с медью. Кроме того, они должны обеспечивать постоянство электрического сопротивления во времени. Для таких областей применения, как электронагревательные приборы, электрические печи сопротивления и другие устройства, работающие при высоких температурах (800--1100° С), требуются проводниковые материалы, могущие длительно работать при высоких температурах без заметного окисления. Этим требованиям удовлетворяют жаростойкие проводниковые сплавы.
Общим же свойством всех перечисленных сплавов является их большое удельное электрическое сопротивление, поэтому они называются сплавами высокого электрического сопротивления. Эти сплавы представляют собой твердые растворы металлов с неупорядоченной структурой . Они удовлетворяют перечисленным выше требованиям.

§ 15. Проводниковые сплавы высокого сопротивления на основе меди и никеля

Проводниковыми сплавами, применяемыми для изготовления точных (образцовых) сопротивлений, являются манганины. Они состоят из меди (Cu), марганца (Mn) и никеля (Ni). Наиболее распространенным является манганин состава: Cu 86%; Mn 12%; Ni 2%. Вообще сплавы типа манганина могут содержать: Cu 84— 86%; Mn 11—13%; Ni 2—3%.
Для стабилизации свойств в манганины вводят: серебро (0,1%), железо (0,2 + 0,5%) и алюминий (0,2 + 0,5%). Цвет манганинов светло-оранжевый. Среднее значение плотности 8,4 г/см3, температура плавления 960°С или несколько выше.
Из манганинов изготовляют мягкие и твердые сорта проволоки*. Основные характеристики мягкой (отожженной) проволоки: предел прочности при разрыве аь =45 + 50 кГ/мм2; относительное удлинение б„ = 10—20%, удельное сопротивление q = 0,42-+ + 0,52 ом-мм2/м. Основные характеристики твердой манганиновой проволоки: аь =50 + 60 кГ/мм2; бл = 5 + 9%; q = 0,43 + 0,53 ом-мм2/м. Из сплавов типа манганина изготовляют проволоку и ленту.

* ПММ — проволока манганиновая мягкая; ПМТ — проволока манганиновая твердая; ПМС — проволока манганиновая стабилизированная.

Манганиновая проволока выпускается диаметром от 0,02 до 6,0 мм. Манганиновая лента выпускается толщиной от 0,09 мм и больше. У манганиновых изделий (проволока, ленты) температурный коэффициент сопротивления находится в пределах а=(3 + 5)х 10-5 1/° С; у стабилизированных сортов манганина а-(0 + 1,5)х Х10-» 1/°С.
Эти данные показывают, что манганин имеет весьма малую зависимость электрического сопротивления от температуры, что очень важно для обеспечения постоянства величины сопротивления в точных электроизмерительных устройствах. Вторым достоинством манганина является очень малая термо-э. д. с., развиваемая этим сплавом в контакте с медью, которая равна 0,9—1,0 мкв/град.
Для стабилизации электрических свойств манганиновой проволоки ее подвергают тепловой обработке в вакууме, заключающейся в выдержке в течение 1—2 ч при 400° С и длительном выдерживании при комнатной температуре. В результате этого улучшается однородность сплава и стабилизируются его свойства.
Наибольшая допустимая рабочая температура для манганина 200° С, но у нестабилизированных сортов манганина, начиная с 60° С, уже наблюдается необратимое изменение свойств. Поэтому сопротивления из нестабилизированной манганиновой проволоки не рекомендуется нагревать выше 60°С. Минимальная температура для проводов из манганина равна — 60° С.
Кроме голой манганиновой проволоки, мягкой и твердой, наша промышленность выпускает манганиновые обмоточные провода с эмалевой высокопрочной изоляцией (марки: ПЭВММ-1; ПЭВММ-2; ПЭВМТ-2) и с другими видами эмалевой изоляции . Кроме того, выпускаются манганиновые провода с изоляцией из натурального шелка (марки: ПШДММ и ПШДМТ), а также провода, изолированные двумя слоями волокнистой изоляции из лавсана (марки ПЛДММ), и другие.
Константин также относится к медно-никелевым сплавам, но в отличие от манганина содержит значительно больше никеля. В состав сплавов типа константана входят: медь 60—65%, никель 41—* 39% и марганец 1—2%.
Характерной особенностью константана является очень незначительная величина его температурного коэффициента сопротивления. Практически он принимается равным нулю (а = 0). Поэтому электрическое сопротивление константана не изменяется с изменением температуры, что является достоинством сплава.
Цвет константана серебристо-белый, температура плавления его 1270° С, среднее значение плотности 8,9 г/см3. Из константана изготовляют мягкие и твердые сорта проволоки диаметром от 0,02 до 5,0 мм.
Основные характеристики мягкой (отожженной) константановой проволоки: аь =45-ь65 кГ/мм2; q = 0,46-=-0,48 ом-мм2/м. Характеристики твердой проволоки: сг& =65-=-70 кГ/мм2; д=0,48-ь -ь0,52 ом-мм2/м. Константан в паре с медью создает большую термо-э. д. с., равную 39 мне/град, что не дает возможности применять константан в точных сопротивлениях и электроизмерительных приборах.
Константановая проволока применяется для изготовления реостатов и термопар. В термопарах константановая проволока чаще всего используется в паре с медной. Спай константановой и медной проволоки при нагреве развивает значительную по величине термо- э. д. с., что дает возможность измерять температуры до 300° С. При температурах выше 300° С начинается сильное окисление меди. Заметное окисление голой константановой проволоки начинается при температурах от 500° С и выше.
Кроме голой (неизолированной) константановой проволоки, наша промышленность выпускает константановые обмоточные провода с высокопрочной эмалевой изоляцией (марки: ПЭВКМ-1; ПЭВКМ-2; ПЭВКТ-1; ПЭВКТ-2), провода, изолированные двумя слоями пряжи из натурального шелка (марка ПШДК) или лавсана (марка ПЛДК), а также провода, изолированные эмалью и одним слоем натурального шелка, или лавсанового волокна (марки ПЭШОК; ПЭЛОК и др.).
При нагревании голой константановой проволоки до 900° С в течение нескольких секунд и последующего охлаждения на воздухе на ее поверхности образуется сплошная пленка из окислов. Эта оксидная пленка имеет темно-серый цвет и обладает электроизоляционными свойствами. Она используется в качестве естественной изоляции между витками константановой проволоки, например в реостатах, где напряжение между витками не превосходит нескольких вольт.

§ 16. Жаростойкие проводниковые сплавы

Для нагревательных элементов, применяемых в электронагревательных приборах и печах сопротивления, необходимы проволока и ленты, могущие длительно работать при температурах от 800 до 1200°С. Описанные ранее чистые металлы (медь, алюминий и др.), а также сплавы (манганин и константан) непригодны для этого, так как интенсивно окисляются, начиная с температуры 300— 500° С. Образующиеся на них защитные пленки окислов легко испаряются и не защищают металл от дальнейшего окисления.
Для электронагревательных приборов нужны жаростойкие проводниковые сплавы высокого сопротивления, т. е. стойкие к окислению при высоких температурах. Кроме того, эти сплавы должны обладать большим удельным сопротивлением и малой величиной температурного коэффициента сопротивления а.
Перечисленным требованиям удовлетворяют сплавы двух типов: двойные сплавы на основе никеля (Ni) и хрома (Сг), называемые нихромами, и тройные сплавы на основе никеля, хрома и железа, называемые ферронихромами. Кроме того, находят применение тройные сплавы железа, хрома и алюминия, называемые фехралями и хромалями. Эти сплавы отличаются различным содержанием составляющих их компонентов и соответственно разной жаростойкостью и электрическими характеристиками.

Таблица 5 Состав и основные свойства жаростойких проводниковых сплавов*


Марка сплава

хром Сг

никель Ni

алюминий Al

титан Ti

железо Fo

Удельное сопрот-
ивление

Температу-рный коэффи-циент сопрот-
ивления а=10—6 1/° С

Допусти мая температура, 0 С

Х15Н60

15—18

55—61

 

 

Остальное

1,02—1,15

12

900—1000

Х20Н80

20—25

75—80

_

1,02—1,12

10

1000—1100

Х20Н80ТЗ .

19—23

Осталь-ное

2,0—2,9

До 2,5

1 ,18—1,36

5

1000—1150

Х20Н80Т

19—23

»

0,4—1,1

 

1,04—1 ,17

9

950—1100

Х1310+4.

12—15

 

3,5—5,5

 

Остальное

1.2—1,3

15

800—850

1Х1710+5.

16—19

До 0,6

4—6

 

1,2—1,5

6

950—1000

ОХ2510+5

23—27

0,6

4,5—6,5

1,3-1,5

5

1100—1200

У сплавов, перечисленных в таблице» плотность колеблется от 6,8 до 8,4 г/см*, а предел прочности при растяжении — от 65 до 80 кГ/мм2 (при 20е С).

Все перечисленные сплавы представляют собой твердые растворы металлов неупорядоченной структуры *. При нагревании этих сплавов на их поверхности образуется плотная защитная пленка, состоящая в основном из окиси хрома (Сг203) и закиси никеля NiO. Эта пленка устойчива при высоких температурах (900— 1100° С) и она надежно защищает сплавы от соприкосновения их с кислородом воздуха. Этим обеспечивается длительная работа проволоки и лент, изготовленных из жаростойких сплавов.
В табл. 5 приведены основной состав и свойства жаростойких сплавов высокого электрического сопротивления, широко применяемых на практике.
В марках сплавов буквы обозначают главные части сплава: хром (X), никель (Н), алюминий (Ю) и титан (Т). Цифра, стоящая за соответствующей буквой, указывает (в среднем) количество этого металла в сплаве. Например, в нихроме марки Х20Н80 содержится хрома 20%. а никеля 80% (по весу). В то же время в обозначениях марок сплавов невозможно отразить точное содержание всех компонентов сплава.
Кроме основных компонентов, перечисленных в табл. 5, в состав жаростойких сплавов входят еще примеси: углерод (0,06—0,15%), кремний (05—1,2%), марганец (0,7—1,5%), фосфор (0,35%) и сера (0,03%). Сера, фосфор и углерод — вредные примеси, так как они повышают хрупкость сплавов, поэтому от них стараются освободиться. Марганец и кремний являются раскислителями, т. е. они позволяют устранить из сплавов кислород, ухудшающий их свойства. Присутствие в сплавах никеля, алюминия и особенно хрома обеспечивает жаростойкость сплавов (900—1200° С).
Кроме того, эти компоненты увеличивают удельное сопротивление и снижают величину температурного коэффициента сопротивления, что и требуется для этих сплавов. Содержание в сплавах хрома больше 30% приводит к повышенной хрупкости и твердости сплавов. Изготовление тонкой проволоки (диаметром 0,02 мм) производится из сплавов, в которых содержание хрома не превышает 20%; эти сплавы марок Х15Н60 и Х20Н80. Проволока диаметром больше 0,2 мм и лента толщиной 0,2 мм и выше изготовляются из сплава остальных марок.
Железо, вводимое в сплавы типа фехраль (сплав марки Х13104), удешевляет их, но после нескольких нагревов у этих сплавов наблюдается резкое возрастание хрупкости. Поэтому спирали из сплавов типа фехраля и хромаля (сплав марки 0Х25105), проработавшие в электронагревательных приборах, не должны подвергаться деформации (при ремонте) в холодном состоянии. Сращивания и скрутки проволок из этих сплавов должны производиться в подогретом (300—400° С) состоянии. Наибольшая допустимая температура для нагревательных элементов из фехраля равна 800—850° С, а для нагревательных элементов из хромаля— 1000—1200° С*.
Нагревательные элементы из нихрома могут длительно работать при температурах 950—1100° С, не изменяя заметно своей пластичности и механической прочности. Однако они надежно работают в стационарном режиме. При частых же включениях и выключениях, вызывающих резкое изменение температуры нихромовых спиралей, может происходить растрескивание защитных окисных пленок па их поверхности. Это вызовет проникновение кислорода воздуха к поверхности нихрома и приведет к его окислению и разрушению.
Кроме голой проволоки из жаростойких сплавов, наша промышленность выпускает обмоточные провода из нихрома с эмалевой изоляцией (марки ПЭНХ, ПЭВНХ и ПЭТВНХ), а также со стекловолокнистой изоляцией на кремнийорганическом лаке (марка ПСДНХ).

*Более высокие температуры допускаются для проволоки и лент большей толщины.

§ 17. Ртуть и ее свойства

Ртуть является единственным металлом, который сохраняет жидкое состояние при комнатной температуре.
Ртуть стоика к окислению, которое наблюдается только при температуре, близкой к температуре ее кипения (356,9° С). Взаимодействие ртути с другими газами (водородом, азотом, окисью углерода) также незначительно. Разведенные соляная и серная кислоты и щелочи па ртуть не действуют, но она растворяется в соляной., серной и азотной концентрированных кислотах. Медь, цинк, свинец, никель, олово, серебро и золото растворяются в ртути.
Ртуть обладает следующими характеристиками: плотность 13, 55 г/см3; температура застывания —39° С; температурный коэффициент объемного расширения 182-10-6 1/°С. Удельное сопротивление q = 0,94+ 0,95 ом-мм2/м; температурный коэффициент сопротивления а = +0,00099 1/°С.
Ртуть применяется в качестве жидких контактов в специальных реле и выключателях, а также в ртутных выпрямителях.
Следует отметить исключительную вредность ртути (особенно ее паров) для здоровья. Поэтому работа со ртутью требует осторожности. Ртуть нужно хранить в герметически закрытой стеклянной или фарфоровой таре. Очистку ртути (фильтрование и др.) производят в специальные закрытых шкафах с вытяжной вентиляцией.



 
« Электромагнитные выключатели ВЭМ-6 и ВЭМ-10   Электромонтажные изделия »
Карта сайта + все метки | Контакты
© Электроэнергетика При перепечатке и цитировании активная гиперссылка на сайт обязательна.