Поиск по сайту
Начало >> Книги >> Архивы >> Электроматериаловедение

Проводниковая медь и сплавы - Электроматериаловедение

Оглавление
Электроматериаловедение
Строение металлических проводниковых материков
Свойства металлов
Факторы, влияющие на свойства проводников
Проводниковая медь и сплавы
Проводниковый алюминий
Проводниковые железо
Свинец
Благородные металлы
Тугоплавкие металлы в электротехнике
Проводниковые материалы с большим удельным сопротивлением
Обмоточные провода
Монтажные провода
Установочные провода
Кабели
Магнитные материалы
Магнитно-мягкие материалы
Магнитно-твердые материалы
Диэлектрики
Способы измерения электрических характеристик диэлектриков
Характеристики электроизоляционных материалов
Газообразные диэлектрики
Жидкие диэлектрики
Очистка, сушка и регенерация электроизоляционных масел
Синтетические жидкие диэлектрики
Твердые органические диэлектрики
Поликонденсационные органические диэлектрики
Природные электроизоляционные смолы
Нагревостойкие высокополимерные диэлектрики
Пленочные электроизоляционные материалы
Электроизоляционные лаки
Электроизоляционные эмали
Воскообразные диэлектрики
Термопластичные компаунды
Термореактивные компаунды
Электроизоляционные бумаги, картоны, фибра, волокнистые материалы
Текстильные электроизоляционные материалы
Электроизоляционные лакоткани
Электроизоляционные пластмассы
Свойства и области применения пластмасс
Слоистые электроизоляционные пластмассы
Древеснослоистые пластмассы и намотанные изделия
Электроизоляционные резины
Электроизоляционная слюда
Миканиты
Микафолий и микалента
Слюдинитовые и слюдопластовые электроизоляционные материалы
Керамика
Фарфоровые изоляторы
Стекло и стеклянные изоляторы
Характеристики изоляторов
Конденсаторные керамические материалы
Сегнетокерамика
Минеральные диэлектрики
Полупроводниковые материалы
Полупроводниковые материалы и изделия
Основные полупроводниковые изделия
Электроугольные изделия
Припои и клеи

ГЛАВА II.
ПРОВОДНИКОВЫЕ МАТЕРИАЛЫ С МАЛЫМ УДЕЛЬНЫМ СОПРОТИВЛЕНИЕМ

§ 7. Проводниковая медь и ее свойства

Медь является одним из главных проводниковых материалов благодаря большой проводимости, механической прочности и стойкости к атмосферной коррозии *. По электропроводности медь стоит на втором месте (после серебра).

*Коррозио (лат.) — разъедание, разрушение металлов под действием той или инок среды (газообразной или жидкой). Примером коррозии металла является ржавление железа — окисление его.

Проводниковая медь получается из слитков меди путем очистки ее от примесей в электролитической ванне с помощью постоянного тока.
Кроме высокой проводимости, медь обладает хорошей пластичностью, поэтому из нее изготовляют волочением проволоку диаметром до 0,01 Мм, а при прокатке получают ленту толщиной до 0,1 мм и медную фольгу толщиной 0,01 мм.
В нормальной атмосфере проводниковая медь устойчива к коррозии. Медные провода на воздухе медленно окисляются, покрываясь тонким слоем окиси меди (CuО). Образовавшаяся пленка окисла препятствует дальнейшему окислению меди. Коррозию меди вызывают: сероводород (H2S), аммиак (NH3), окислы азота (NO), пары азотной кислоты и некоторые другие реагенты.
Медь имеет красновато-оранжевый цвет и обладает температурой плавления 1083° С. Температурный коэффициент линейного расширения меди равен 17-10—6 1/°С.
Для изготовления всех проводниковых изделий применяют очищенную медь марок МО и Ml, отличающихся только содержанием кислорода. В меди марки МО содержится кислорода не более 0,02%, а в меди марки Ml — не более 0,05%. Содержание других примесей: висмута, сурьмы, мышьяка, никеля в меди обеих марок допускается в равных количествах. Серебро (как примесь) засчитывается в содержание меди, так как оно не снижает ее проводимость. Остальные примеси уменьшают проводимость меди. Общее количество примесей в меди марки МО не более 0,05%, а в меди марки Ml —не более 0,1 %.
У изделий (проволока, шины) из мягкой (отожженной) меди (марка ММ) плотность 8,90 г/см3, предел прочности при растяжении (Т = 20-25 кГ/мма, относительное удлинение 6Л= 15ч-40%, удельное сопротивление Q = 0,0175001754 ом-мм2/м. У изделий из твердой (неотожженной) меди (марка МТ) плотность 8,96 г/см3; а = 36-н40 кГ/мм2; 6л = 0,5-2,5%; q = 0,0177-0,0180 ом-мм2/м.
Провода меньшего диаметра обладают повышенной прочностью при растяжении и большей величиной удельного электрического сопротивления. Это объясняется искажением формы и уменьшением объема кристаллов металла при протяжке и волочении проводов малого диаметра.
У мягких и твердых сортов проводниковых изделий (проводов) из меди температурный коэффициент электрического сопротивления принимается равным а= +0,00400 1/° С.
Троллейный провод из меди
Рис. 17. Троллейный провод из меди
Кроме проводов круглого и прямоугольного сечения, из меди изготовляют также провода фасонного сечения, например троллейный провод (рис. 17).
Проволоку и шины из мягкой меди ММ применяют преимущественно для изготовления изолированных обмоточных и монтажных проводов.
Следует заметить, что провода прямоугольного сечения обеспечивают большой коэффициент заполнения обмотки по сравнению с проводами круглого сечения.
Это значит, что при одном и том же объеме обмотки в ней можно поместить большее количество витков из прямоугольной меди и тем самым повысить мощность электрической машины или аппарата. Во избежание повреждения изоляции острые ребра у проводов прямоугольного сечения (шины) слегка закругляют.
Проводниковые изделия из твердой меди МТ применяют, как правило, неизолированными (голыми). Это провода для воздушных линий, шины для электрических аппаратов и коллекторов электрических машин. От этих проводниковых изделий требуется повышенная механическая прочность, твердость и сопротивление истиранию.
Медь — весьма ценный материал, который следует расходовать экономно, и там, где это возможно, медь необходимо заменять менее дефицитными материалами — проводниковым алюминием или железом.

§ 8. Проводниковые сплавы на основе меди (бронзы и латуни)

Из сплавов на основе меди наибольшее применение в электротехнике получили бронзы и латуни.
Бронзы —это сплавы меди с оловом, алюминием и другими металлами, специально вводимыми с целью получения определенных свойств сплава. Раньше всех начали применяться оловянистые бронзы, в которых содержание олова составляет 8—20%. Оловянистые бронзы являются дорогостоящими сплавами, так как содержат дефицитное олово. Поэтому оловянистые бронзы стараются заменять другими бронзами, содержащими алюминий, кадмий, фосфор и другие вещества (легирующие* элементы).

*         Легировать (лат.) —соединять, сплавлять.

Характерной особенностью бронз является их малая объемная усадка при литье (0,6—0,8%) по сравнению с чугуном и сталями, у которых усадка достигает 1,5—2,5%. Поэтому наиболее сложные по форме детали отливают из бронзы. Другие характерные свойства бронз — повышенная твердость, упругость (по сравнению с медью), большое сопротивление истиранию и стойкость к коррозии. Благодаря этим ценным свойствам бронзы широко применяют в машиностроении для изготовления втулок, шестерен, пружин (бронзовая лента) и других деталей.
Марки бронз обозначаются буквами Бр. (бронза), за которыми следуют буквы и цифры, показывающие, какие легирующие элементы и в каком количестве содержатся в данной бронзе (табл. 2).
Таблица 2
Марки и состав некоторых бронз
Марки и состав некоторых бронз
Бронзы бывают литейные, из которых детали получают методом литья, и бронзы, обрабатываемые давлением (Бр. А7; Бр.-Б2 и др.).
Плотность бронз находится в пределах: 8,2—8,9 г/сж3.
В электротехнике стараются применять бронзы, проводимость которых близка к проводимости меди. Такими бронзами являются кадмиевая и кадмиево-оловянистая. Остальные бронзы нашли применение в электротехнике благодаря следующим свойствам: упругости, сопротивлению истиранию и высокой механической прочности. Из бронз изготовляют провода с повышенной механической прочностью, а также щеткодержатели, пружины и контактные детали для электрических аппаратов и приборов. Наибольшей пластичностью обладают алюминиевые бронзы. Бериллиевые бронзы отличаются очень высокой механической прочностью, сопротивлением к истиранию и к окислению на воздухе.
Кроме бронз, в электротехнике нашли широкое применение сплавы меди с цинком — латуни, в которых содержание цинка может доходить до 43%. При этом содержании цинка латуни обладают наибольшей механической прочностью. Латуни, содержащие 30—32% цинка, обладают наибольшей пластичностью, поэтому из них изготовляют изделия горячей или холодной прокаткой и волочением: листы, ленты, проволоку и др. Без нагрева из листовой латуни можно изготовлять глубокой вытяжкой и штамповкой сложные детали: кожухи, колпачки, фасонные шайбы и др.
В результате холодной обработки давлением у латуни увеличивается твердость и механическая прочность, но заметно снижается пластичность. Для восстановления пластичности латунь отжигают при температуре 500—600° С и медленно охлаждают до комнатной температуры. Латуни хорошо обрабатываются резанием. Изделия из латуни устойчивы к атмосферной коррозии, но деформированная (вытяжкой) латунь подвержена коррозии во влажной атмосфере в большей степени, чем медь.
Для повышения коррозионной стойкости латуней в них вводят легирующие элементы: алюминий, никель, олово и др.
Такие латуни называют специальными, например морская латунь (марка Л070-1) стойка к коррозии даже в морской воде. Марки латуней начинаются с буквы Л (латунь), за которой следуют буквы, указывающие на другие элементы (кроме меди), которые входят в состав латуней. Стоящие в конце марки цифры означают содержание (в процентах) меди и других компонентов (табл. 3).
Таблица 3
Марки и состав некоторых латуней


Марка латунь

Состав компонентов, %

Температура
плавления,
0 С

медь

цинк

свинец

Л62.

60—63,5

30,5-40

 

905

Л68.

60—70

30—33

_

935

ЛС60-1.

59—61

38—40

0,6—1,0

900

Л070-1

69-71

28—30

1—1,5

930

Таблица 4
Основные характеристики проводниковых бронз и латуней


Материал

Обработка

Проводимость, %

Предел прочности при растяжении, кГ/мм‘

Относительное удлинение при растяжении, %

Медь проводниковая (99,9—

Отожженная

100

20—25

15—40

99,95% Cu)

Твердотянутая

 98

36—40

0,5—2,5

Бронза кадмиевая (0,9% Cd;

Отожженная

95

31

40

остальное Cu)

Твердотянутая

90

73

4

Бронза фосфористая (0,1% Р;

Отожженная

10—15

40

40

остальное Cu)

Твердотянутая

10—15

105

3

Бронза бериллиевая (2,0—

Отожженная

36

70—79

9

2,3% Be; 0,2—Ni; остальное Cu)

Твердотянутая

26

162—175

20

Латунь Л62 (40% Zn; 60%

Отожженная

25

35—42

40—50

Cu)

Твердотянутая

25

88

5

Плотность латуней находится в пределах: 8,2—8,85 г/сv3. Токоведущие детали из латуни можно получать литьем или давлением. Латунные детали, полученные штамповкой или давлением при комнатной температуре, приобретают жесткость (наклеп) и склонны к растрескиванию. Для снятия внутренних напряжений и предупреждения растрескивания наклепанные латунные детали подвергают отжигу. Латунь хорошо механически обрабатывается, сваривается и паяется. В табл. 4 приведены основные характеристики бронз и латуней в сравнении с проводниковой медью.



 
« Электромагнитные выключатели ВЭМ-6 и ВЭМ-10   Электромонтажные изделия »
Карта сайта + все метки | Контакты
© Электроэнергетика При перепечатке и цитировании активная гиперссылка на сайт обязательна.