Поиск по сайту
Начало >> Книги >> Архивы >> Качество электроэнергии и его обеспечение

Средства регулирования напряжения - Качество электроэнергии и его обеспечение

Оглавление
Качество электроэнергии и его обеспечение
Влияние на работу электроприемников
Регулирование частоты
Регулирование напряжения
Средства регулирования напряжения
Оптимизация рабочих режимов
Баланс активной и реактивной мощности
Оптимизация распределения мощностей
Повышение надежности электроснабжения

1.6. СРЕДСТВА РЕГУЛИРОВАНИЯ НАПРЯЖЕНИЯ В ЭЛЕКТРИЧЕСКОЙ СИСТЕМЕ
Ранее были перечислены основные средства централизованного и местного регулирования напряжения в электрических сетях. Рассмотрим их особенности.

1.6.1. Регулирование напряжения генераторами станций

Все генераторы электростанций оборудованы устройствами автоматического регулирования возбуждения (АРВ). Генератор вырабатывает номинальную активную мощность при отклонениях напряжения от номинального не более ±5%. При больших отклонениях мощность генератора должна быть снижена, по этой причине пределы регулирования напряжения с помощью генераторов ограничены. В связи с изменяющейся нагрузкой системы все генераторы электростанций работают по заданным графикам генерации активной и реактивной мощности. Условия работы электростанций в системе различны. Это влияет и на возможности регулирования напряжения с помощью генераторов.
При работе электрической станции изолированно ее генераторы, подключенные к шинам ГРУ с присоединенной к ним распределительной сетью (рис. 8, а) относительно малой протяженности, осуществляют регулирование напряжения изменением возбуждения.

Рис 8
Этот способ регулирования напряжения на таких станциях является основным средством обеспечения заданного режима напряжения у нагрузок. Пределы регулирования напряжения изменением возбуждения допускаются не ниже 105% номинального в период наибольших нагрузок и не выше 100% номинального в период наименьших нагрузок. При наличии сети высокого напряжения трансформаторы связи генераторов с РУВН предпочтительнее иметь с РПН.
При работе в блоках с трансформаторами связи (рис. 8, б) генераторы непосредственно не связаны с распределительными сетями генераторного напряжения, а нагрузка собственных нужд обычно питается через трансформаторы с РПН. Эти условия позволяют использовать полностью предел изменения напряжения на блочных генераторах от —5% до + 10% относительно номинального. Трансформаторы связи в блочных схемах применяются без РПН.
На электростанциях, объединенных в энергетическую систему (рис. 8, в), изменения напряжений должны осуществляться согласованно по графику, т. к. изменение напряжения даже у одной из станций приведет к перераспределению выработки реактивной мощности всех станций системы. Это условие ограничивает возможности регулирования напряжения в отдельных районах системы, поэтому в мощных системах регулирование напряжения только генераторами станций не является достаточным и требует дополнительных средств.

1.6.2 Регулирование напряжения изменением коэффициента трансформации трансформаторов

Для регулирования напряжения с помощью трансформаторов необходимо иметь возможность изменять соотношение витков обмоток трансформаторов. Это достигается тем, что, помимо основных ответвлений обмоток, предусматривают дополнительные (регулировочные) ответвления. Регулировочные ответвления обычно выполняются на стороне высокого напряжения трансформаторов, так как это значительно облегчает переключающее устройство (меньшие токи).
Трансформаторы с переключенном ответвлений без возбуждения (ПБВ) не позволяют регулировать напряжение в течение суток, так как это связано с необходимостью отключения трансформатора для каждого переключения, что по эксплуатационным условиям недопустимо По этой причине ПБВ используется только для сезонного регулирования напряжения (2—3 раза в год). Современные трансформаторы с ПБВ позволяют регулировать напряжение в пределах ±5% с шагом 2,5% от номинального. Устройства ПБВ устанавливаются на трансформаторах мощностью не более 630 кВ-А, Схема одной фазы трансформатора с ПБВ приведена на рис. 9, а. Требуемый коэффициент трансформации трансформатора устанавливается с помощью переключателя П.

Рис 9
Трансформаторы с РПН позволяют регулировать напряжение под нагрузкой, т. е без отключения от сети, без перерыва электроснабжения потребителей. Устройства РПН устанавливаются на мощных трансформаторах с напряжением выше 20 кВ. Регулировочные ступени трансформаторов выполняются на обмотке  высшего напряжения со стороны присоединения ее к нейтрали (рис. 9, б). На этом рисунке обозначено регулирующее устройство РУ, включающее в себя ступень грубой регулировки П и ответвления тонкой регулировки, выбираемые с помощью избирателя И. Пределы регулирования напряжения трансформаторов с РПН составляют от ±10% до ±16% ступенями 1,5... 2,5% от номинального. Приведенная схема одной фазы трансформатора с РПН иллюстрирует лишь принцип регулирования напряжения. Реальные устройства РПН имеют более сложную конструкцию, включающую ряд дополнительных элементов.
Автотрансформаторы осуществляют регулирование напряжения либо за счет ответвлений на обмотке высшего напряжения (со стороны присоединения ее к нейтрали, что облегчает изоляцию переключающего устройства), либо с помощью регулировочной обмотки на линейном конце среднего напряжения, как показано на рис. 9, в. В первом случае имеет место связанное регулирование, т. к. при переключении ответвлений одновременно меняется количество витков обмоток высшего и среднего напряжения. Во втором случае регулирование будет независимым, но переключающее устройство должно рассчитываться на номинальный ток, а изоляция на полное напряжение средней обмотки. При такой схеме автотрансформатора регулируется коэффициент трансформации между обмотками высшего и среднего напряжения, а соотношение витков обмоток ВН и НН остается неизменным. В основном автотрансформаторы выпускаются с устройствами РПН на стороне среднего напряжения. Такие автотрансформаторы применяются на большие мощности и высокие напряжения. Диапазон регулирования на стороне среднего напряжения составляет ±12% со ступенями 2% от номинального.
Линейные регуляторы (ЛР), или последовательные регулировочные трансформаторы служат для регулирования напряжения и перераспределения потоков мощности в линиях. Они устанавливаются либо последовательно с нерегулируемыми обмотками трансформаторов, либо непосредственно в линии. На рис. 9, г показана схема включения ЛР в цепь автотрансформатора. Регулятор содержит регулируемый автотрансформатор РАТ и последовательный трансформатор ПТ, с помощью которого вводится дополнительная ЭДС Едоб в нейтраль обмотки высшего напряжения, чем достигается изменение соотношения напряжений обмоток ВН и СН относительно обмотки НН. Диапазон регулирования ЛР достигает ±15% от номинального. ЛР значительно дороже устройств РПН поэтому их применение ограничено. Существенным достоинством линейных регуляторов является возможность не только продольного регулирования напряжения, но и поперечного (изменением фазы ЕДоб). Эго свойство ЛР особенно широко используется при регулировании потоков мощности в линиях электропередач. Мощность ЛР достигает 125 MB-А, а уровень напряжения 110 кВ.

1.6.3 Регулирование напряжения с помощью компенсирующих устройств

Потеря напряжения, характеризующая изменение напряжения у потребителей, при пренебрежении поперечной составляющей падения напряжения определяется зависимостью (19). Регулируя потери напряжения, можно поддерживать требуемый уровень напряжения на шинах потребителей Из формулы (19) следует, что одним из эффективных средств регулирования напряжения является изменение реактивной мощности, передаваемой сетью. Реактивная мощность вырабатывается не только генераторами электростанций, но и другими источниками: синхронными компенсаторами (СК), синхронными двигателями (СД), батареями конденсаторов (БК), статическими источниками реактивной мощности (ИРМ), тиристорными компенсирующими установками (ТКУ) и др. При наличии источников реактивной мощности, или, как их еще называют, компенсирующих устройств, потери напряжения можно записать в следующем виде:
(21)
где QKу—реактивная мощность, генерируемая или потребляемая компенсирующим устройством, квар, Мвар. Из формулы видно, что потери напряжения можно свести до величины, определяемой лишь потерями напряжения на активном сопротивлении сети, вырабатывая всю реактивную мощность на месте потребления (QKy = Q), либо, наоборот, увеличить их, переведя компенсирующее устройство в режим потребления реактивной мощности.
Синхронный компенсатор — это синхронный двигатель, работающий без нагрузки на валу. В отличие от генератора он не имеет первичного двигателя. СК не может вырабатывать активную мощность, а для покрытия своих механических и электрических потерь он потребляет энергию из сети. При перевозбуждении СК генерирует реактивную мощность в сеть, а при недовозбуждеиии становится потребителем реактивной мощности. Регулирование напряжения с помощью СК осуществляется плавно. Синхронные компенсаторы обычно устанавливают на мощных понижающих подстанциях и включают на шины 6 . . . 10 кВ (рис. 10, а) или подключают к обмотке НН автотрансформатора либо к компенсационной обмотке трансформатора с РПН.

Рис 10
Синхронный двигатель широко используется в качестве электропривода для рабочих механизмов. Потребляя активную мощность, он одновременно может генерировать реактивную мощность (при перевозбуждении) либо потреблять ее (при недовозбуждении). СД позволяет реализовать плавное, автоматическое регулирование напряжения в местной сети. Стоимость СД высокая, но ниже, чем стоимость асинхронного двигателя такой же мощности совместно с компенсирующим устройством, позволяющим получить эквивалентный эффект регулирования напряжения. Схема подключения СД такая же, как и СК.
Батареи конденсаторов применяют в тех случаях, когда не требуется ее работа в режиме потребления реактивной мощности. Управляемые батареи конденсаторов (УБК) представляют собой группу последовательно и параллельно соединенных конденсаторов для получения требуемой мощности
и для подключения на заданное напряжение (рис. 10, б). При параллельном подключении УБК к сети реактивная мощность, генерируемая батареей,
(22)
где С — емкость конденсаторной батареи. мФ; Uc — напряжение сети, к которой подключена УБК, кВ.
УБК более экономичны, чем СК. Их выполняют на большие мощности (до 100 и более Мвар). Батареи конденсаторов устанавливаются на крупных подстанциях и подключаются как на шины 6.. .35 кВ, так и на шины высокого напряжения 110 кВ. Наличие переключающего устройства батарей конденсаторов дает возможность ступенчатого регулирования напряжения на шинах потребителей, так как позволяет отключать часть параллельно включенных конденсаторов или всю батарею при снижении нагрузки и включать полностью все конденсаторы при ее максимуме.
Статические источники реактивной мощности (ИРМ, СКУ, СТК и др.) в последние годы получают все большее применение в силу таких их качеств, как отсутствие вращающихся частей, высокое быстродействие, плавность регулирования напряжения и генерируемой реактивной мощности, незначительное влияние на токи к. з. и т. п. Однако их стоимость пока значительно выше, чем стоимость других компенсирующих устройств такой же мощности. Статические компенсирующие установки по принципу работы делят на две группы. К первой группе относят установки, в которых реактивная мощность генерируется статическими конденсаторами и регулируется с помощью быстродействующих тиристорных средств, а ко второй — установки, в которых для генерирования реактивной мощности используется свойство индуктивности аккумулировать энергию в магнитном поле. На рис. 10, в приведена упрощенная схема тиристорного компенсатора типа ТК, предназначенного для компенсации реактивной мощности с автоматическим поддержанием напряжения или коэффициента мощности. Силовая часть компенсатора содержит два трехфазных управляемых моста, включенных параллельно и замкнутых на обмотки дросселя L. Мосты собраны по схеме независимого инвертора с отсекающими диодами и искусственной емкостной коммутацией. Управление тиристорными мостами осуществляется системой управления
СУ. Современные статические тиристорные компенсаторы, например, серии СТК. выпускаются на мощность до 450 Мвар с номинальным напряжением до 110 кВ. Эти компенсаторы нашли применение в мощных протяженных линиях электропередач, в сетях электроснабжения крупных сталеплавильных печей и для других целей.
Линии электропередачи рассматривают как распределенную емкость, зависящую от ее протяженности, диаметра фазных проводов, их взаимного расположения, расстояния между ними и диэлектрической проницаемости среды Генерируемая ЛЭП реактивная (зарядная) мощность.
123)
где b0 = wС0 — погонная реактивная проводимость ЛЭП, См/км; Со — погонная емкость ЛЭП, Ф/км; /—протяженность ЛЭП, км.
Протяженные ЛЭП являются мощными нерегулируемыми источниками реактивной мощности в системе. Эта мощность в основном изменяется за счет ее компенсации с помощью шунтирующих реакторов (поперечная индуктивная компенсация).

1.6.4. Регулирование напряжения изменением параметров сети

Из зависимостей (19) и (20) видно, что в незначительных пределах напряжение можно регулировать изменением активного и реактивного сопротивлений питающей сети. При нескольких параллельно работающих линиях или трансформаторах (рис. 11, а, б) в часы минимальной нагрузки, когда снижаются потери напряжения, можно отключить одну из линий или трансформатор, что приведет к увеличению потерь напряжения в питающей сети и, следовательно, к понижению напряжения у потребителя.

 Такое регулирование, несмотря на ступенчатость, повышает экономичность передачи, однако его можно использовать только в том случае, если не снижается надежность электроснабжения.
емкостная компенсация индуктивного сопротивления передачи
Риc. 12
Продольная емкостная компенсация индуктивного сопротивления передачи возможна при последовательном включении в линию обратного по знаку емкостного сопротивления (рис. 12, а), при этом результирующее реактивное сопротивление передачи определится как
Xi = XL - Хс                                           (24)
С учетом формулы (24) при известных параметрах нагрузки напряжение на шинах потребителя до и после компенсации определится зависимостями (для фазных токов и напряжений):
(25)
(26)
Как видно из векторной диаграммы (рис. 12, б), при неизменном напряжении на питающем конце линии в случае включения продольной емкостной компенсации напряжение у потребителя будет выше, чем без нее. Это определяется тем, что потери напряжения на реактивном сопротивлении линии в случае компенсации снижаются, т. е.

Включение компенсации (см. рис. 12, а) осуществляется расшунтированием батареи конденсаторов коммутирующим аппаратом. Степень компенсации на отечественных ЛЭП не превышает 50% (например, ЛЭП Братск — Иркутск имеет степень компенсации 30%).
К недостаткам этого способа регулирования напряжения относятся следующие: увеличение токов к. а. в сети, возможность появления перенапряжений на конденсаторных батареях, появление при толчках нагрузки субгармонических колебаний вплоть до субгармонического резонанса.



 
« Как работает электрическая изоляция   Компенсация емкостных токов в сетях с незаземленной нейтралью »
Карта сайта + все метки | Контакты
© Электроэнергетика При перепечатке и цитировании активная гиперссылка на сайт обязательна.