Поиск по сайту
Начало >> Книги >> Архивы >> Прокладка силовых кабельных линий

Методы отогрева мороженого грунта - Прокладка силовых кабельных линий

Оглавление
Прокладка силовых кабельных линий
Содержание проекта кабельной линии
Трассы кабельных линий
Кабельные блоки
Открытая прокладка кабеля в лотках
Коллекторы и туннели
Кабельные каналы
Механизация земляных работ при устройстве траншей
Скрытые способы устройства кабельных переходов
Методы отогрева мороженого грунта
Хранение, проверка и транспортировка кабелей перед прокладкой
Прокладка кабеля
Прокладка кабеля в блоках и трубах
Прокладка кабеля в коллекторах, туннелях, каналах
Прокладка кабеля в производственных помещениях
Прокладка кабеля на лотках
Прокладка кабеля под водой
Техническая документация и маркировка кабелей

Разработка грунта, связанная с рытьем траншеи в зимних условиях, осложняется необходимостью предварительной подготовки и отогрева мороженого грунта. Глубина сезонного промерзания грунта определяется по данным метеорологических станций.
В городских условиях, при наличии большого количества действующих кабельных линий и других подземных коммуникаций применение ударных инструментов (отбойных молотков, ломов, клиньев и др.) невозможно из-за опасности механического повреждения действующих кабельных линий и других подземных коммуникаций.
Поэтому мерзлый грунт до начала работ по рытью траншеи в зоне действующих кабельных линий должен быть предварительно отогрет с тем, чтобы земляные работы вести лопатами без применения ударного инструмента.
Отогрев грунта может производиться электрическими рефлекторными печами, электрическими горизонтальными и вертикальными стальными электродами, электрическими трехфазными нагревателями, газовыми горелками, паровыми и водяными иглами, горячим песком, кострами и т. д. Способы отогрева грунта, при которых нагревательные иглы вводятся в мерзлый грунт путем бурения скважин либо их забивки, не получили применения, так как этот способ эффективен и применение его может быть оправдано экономически при глубине разрытия более 0,8 м, т. е. на глубине, которая для кабельных работ не используется. Отогрев грунта может также вестись токами высокой частоты, однако и этот способ пока не получил практического применения ввиду сложности оборудования и низкого коэффициента полезного действия установки. Независимо от принятого способа отогреваемая поверхность предварительно очищается от снега, льда и верхних покровов основания (асфальт, бетон).

 

Отогрев грунта электрическими токами промышленной частоты при помощи стальных электродов, уложенных горизонтально на мороженый грунт, заключается в создании цепи электрического тока, где отмораживаемый грунт используется как сопротивление.
Горизонтальные электроды из полосовой, угловой и любых других профилей стали длиной 2,5—3 м укладывают горизонтально на мерзлый грунт. Расстояние между рядами электродов, включаемых в разноименные фазы, должно быть 400 — 500 мм при напряжении 220 В и 700—800 мм при напряжении 380 В. Ввиду того что мерзлый грунт плохо проводит электрический ток, поверхность грунта засыпается слоем опилок, смоченных в водном растворе соли толщиной 150—200 мм. В начальный период включения электродов основное тепло передается в грунт от опилок, в которых под влиянием электрического тока возникает интенсивный разогрев. По мере разогрева грунта, повышения его проводимости и проходящего через грунт электрического тока интенсивность разогрева грунта повышается.
С целью уменьшения потерь тепла от рассеивания слой опилок уплотняют и накрывают деревянными щитами, матами, толем и пр.
Расход электрической энергии для отогрева грунта с помощью стальных электродов в большой степени определяется влажностью грунта и составляет от 42 до 60 кВт-ч на 1 м3 мороженого грунта при длительности отогрева от 24 до 30 ч.
Работы по размораживанию грунта электрическим током должны производиться под надзором квалифицированного персонала, ответственного за соблюдение режима отогрева, обеспечения безопасности работ и исправности оборудования. Указанные требования и сложности их выполнения, естественно, ограничивают возможности применения этого способа. Лучшим и более безопасным методом является применение напряжения до 12 В.

нагреватели для отогрева грунта
Рис. 15. Конструкция трехфазных нагревателей для отогрева грунта

а — нагреватель; б — схема включения; 1 — стержень стальной диаметром 19 мм, 2 —труба стальная диаметром 25 мм, 3 —втулка стальная диаметром 19—25 мм, 4 — контакты медные сечением 200 мм2, 5 — полоска стальная 30X6 мм2.

Электрические трехфазные нагреватели позволяют произвести отогрев грунта при напряжении 10 В. Элемент нагревателя состоит из трех стальных стержней, каждый стержень вставлен в две стальные трубы, общая длина которых на 30 мм меньше длины стержня; концы стержня сварены с концами этих труб.
Пространство между стержнем и внутренней поверхностью каждой трубы засыпано кварцевым песком и для герметизации залито жидким стеклом (рис. 15)- Концы трех труб, расположенных в плоскости А—Л, соединены между собой приваренной к ним полоской стали, образуя нейтральную точку звезды нагревателя. Три конца труб, расположенных в плоскости Б—Б, при помощи закрепленных на них медных зажимов присоединяются через специальный понизительный трансформатор мощностью 15 кВ-А к электрической сети. Нагреватель укладывается непосредственно на грунт и засыпается талым песком толщиной 200 мм. Для уменьшения потерь тепла отогреваемый участок дополнительно укрывают сверху матами из стекловолокна.
Расход электрической энергии для отогрева 1 м3 грунта при этом методе составляет 50—55 кВт-ч, а время отогрева 24 ч.

 

Электрическая рефлекторная печь. Как показал опыт ведения ремонтных работ в условиях городских сетей, наиболее удобным, транспортабельным и быстрым при одних и тех же условиях, определяемых степенью промерзания, характером отогреваемого грунта и качеством покрытия, является метод отогрева электрическими рефлекторными печами. В качестве нагревателя в печи применяется нихромовая или фехралевая проволока диаметром 3,5 мм, навитая спиралью на изолированную асбестом стальную трубу (рис. 16).
Рефлектор печи изготовляется из согнутого по оси в параболу с расстоянием от отражающего рефлектора до спирали (фокус) 60 мм алюминиевого, дюралюминиевого или стального хромированного листа толщиной 1 мм. Рефлектор отражает тепловую энергию печи, направляя ее на участок отогреваемого мороженого грунта. Для защиты рефлектора от механических повреждений печь закрывается стальным кожухом. Между кожухом и рефлектором имеется воздушный промежуток, что сокращает потери тепла от рассеивания.
Рефлекторная печь присоединяется к электрической сети напряжением 380/220/127 В.
При отогреве грунта собирается комплект из трех однофазных рефлекторных печей, которые соединяют в звезду или треугольник соответственно напряжению сети. Площадь отогрева одной печи составляет 0,4X1,5 м2; мощность комплекта печей 18 кВт.
Рефлекторная печь для отогрева мороженого грунта
Рис. 16. Рефлекторная печь для отогрева мороженого грунта.
1 — нагревательный элемент, 2 — рефлектор, 3 — кожух; 4 — контактные зажимы
Расход электроэнергии для отогрева 1 м3 мороженого грунта составляет примерно 50 кВт-ч при продолжительности отогрева от 6 до 10 ч.
При пользовании печами необходимо также обеспечить безопасные условия производства работ. Место отогрева должно быть ограждено, контактные зажимы для присоединения проводом закрыты, а спирали течи не должны касаться грунта.

Отогрев мороженого грунта огнем. Для этой цели используется как жидкое, так и газообразное топливо. В качестве жидкого топлива применяется солярное масло. Расход его составляет 4—5 кг на 1 м3 отогретого грунта. Установка состоит из коробов и форсунок. При длине коробов 20—25 м установка за сутки дает возможность отогреть грунт на глубине 0,7—0,8 м.
Процесс подогрева длится 15—16 ч. В течение остального времени суток оттаивание грунта происходит за счет аккумулированного тепла его поверхностным слоем.
Более эффективным и экономическим топливом для отогрева грунта является газообразное.
Газовая горелка, применяемая для этой цели, представляет собой отрезок стальной трубки диаметром 18 мм со сплюснутым конусом. Полусферические короба изготовляют из листовой стали толщиной 1,5—2,5 мм. Для экономии (потерь тепла короба обсыпают теплоизоляционным слоем грунта толщиной до 100 мм. Стоимость отогрева грунта газовым топливом составляет в среднем 0,2—0,3 руб/м3.
Отогрев грунта кострами применяется при незначительном объеме работ (рытье котлованов и траншеи для вставки). Костер разводят после расчистки места от снега и льда. Для большей эффективности отогрева костер накрывают листами железа толщиной 1,5—2 мм. После того как грунт отогрет на глубину 200—250 мм, что устанавливается специальным стальным зондом, дают костру догореть, после чего выбирают лопатами оттаявший грунт. Затем на дне образовавшейся впадины вновь разводят костер, повторяя эту операцию до тех пор, пока мороженый грунт не будет выбран на всю глубину. В ходе работ по отогреву грунта необходимо следить за тем, чтобы вода от тающего снега и льда не заливала костер.
В процессе отогрева грунта действующие кабели могут быть повреждены в результате воздействия теплонагревателя. Как показал опыт, для надлежащей защиты действующих кабелей при отогреве грунта необходимо, чтобы между нагревателем и кабелем сохранялся слой земли толщиной не менее 200 мм в течение всего времени отогрева.



 
« Прокладка проводов и кабелей   Промышленные электростанции »
Карта сайта + все метки | Контакты
© Электроэнергетика При перепечатке и цитировании активная гиперссылка на сайт обязательна.