Поиск по сайту
Начало >> Книги >> Архивы >> Сборка трансформаторов

Напряжение кз - Сборка трансформаторов

Оглавление
Сборка трансформаторов
Основные параметры
Поле рассеяния и его влияние на параметры трансформатора
Электродинамические силы, короткое замыкание
Напряжение кз
Регулирование напряжения
Способы охлаждения
Материалы, применяемые в трансформаторах
Требования к качеству электроизоляционных материалов
Характеристика электроизоляционных материалов
Конструкционные и вспомогательные материалы
Основные части
Классификация магнитных систем
Устройства крепления стержней и ярм магнитной системы
Разгрузка от механических воздействий и заземление магнитной системы
Изоляция силовых трансформаторов
Обмотки
Способы прессовки обмоток
Отводы
Переключающие устройства
РПН
Вводы
Вспомогательные устройства
Охлаждение
Установка активной части в баке
Защитные и контрольно-измерительные устройства
Сборка магнитных систем
Влияние технологической обработки на магнитные свойства стали
Сборка плоских шихтованных магнитных систем
Насадка обмоток и укладка изоляции
Распрессовка и расшихтовка верхнего ярма магнитной системы
Насадка обмоток трансформатора мощностью до 160 кВА
Насадка обмоток трансформаторов мощностью до 250—6300 кВА
Расклиновка обмоток трансформаторов мощностью до 6300 кВ-А с ВН до 35 кВ
Особенности насадки обмоток и укладки изоляции мощностью до 25 000 кВA с ВН 110кВ
Установка прессующих колец, шихтовка верхнего ярма
Прессовка верхнего ярма
Изготовление, монтаж и соединение отводов
Пайка твердыми припоями
Электродуговая сварка
Холодная сварка, соединение методом прессования
Заготовка отводов
Комплектовка переключателей
Сборка отводов ВН трансформаторов мощностью до 6300 кВА
Сборка отводов НН трансформаторов мощностью до 6300кВА
Особенности сборки отводов мощных трансформаторов
Особенности сборки отводов ВН трансформаторов с РПН
Термовакуумная обработка активных частей
Третья сборка трансформаторов
Комплектование бака и крышки
Отделка активной части и установка ее в бак
Комплектовка и установка на трансформаторе расширителя, газового реле, выхлопной трубы
Сборка охлаждения системы Д
Особенности конструкции и сборки силовых сухих трансформаторов
Особенности конструкции и сборки трансформаторов 110 кВ
Особенности конструкции и сборки автотрансформаторов
Особенности конструкции и сборки силовых электропечных трансформаторов
Особенности конструкции и сборки преобразовательных трансформаторов
Сварочные трансформаторы
Трансформаторы тока
Трансформаторы напряжения
Испытание трансформаторов
Приемо-сдаточные испытания
Демонтаж
Отделка, сдача, монтаж и ввод в работу
Вспомогательные работы при сборке трансформаторов
Организация сборочных работ
Механизация сборочных работ

§ 8. НАПРЯЖЕНИЕ КОРОТКОГО ЗАМЫКАНИЯ И ЕГО ЗАВИСИМОСТЬ ОТ СБОРКИ ТРАНСФОРМАТОРА

Способы оценки поля рассеяния.

Поле рассеяния, как указывалось ранее, играет исключительную роль в трансформаторе: увеличивает добавочные потери в обмотках и элементах конструкции, т. е. снижает полезную мощность и кпд трансформатора; уменьшает напряжение на его вторичных обмотках и увеличивает потребление реактивной мощности, а также защищает трансформатор при коротком замыкании, уменьшает электродинамические усилия, ограничивает токи и нагрев обмоток.
Учитывая роль поля рассеяния, важно правильно его измерять и оценивать. Непосредственно измерить поле рассеяния сложно: слишком разнообразны контуры, по которым замыкаются магнитные поля рассеяния. Поэтому его оценивают по влиянию, которое оно оказывает на напряжение и токи в обмотках при коротком замыкании трансформатора.
Линейное напряжение, которое надо подвести к одной из обмоток при короткозамкнутой другой, для установления в обмотках номинальных токов называют напряжением короткого замыкания трансформатора, обозначают ик и выражают в процентах от номинального:

где U1 — номинальное первичное напряжение, В, Uк — напряжение короткого замыкания, В.
Существует прямая зависимость между полем рассеяния и напряжением короткого замыкания, поэтому напряжение короткого замыкания используют для оценки поля рассеяния и его влияния на работу трансформатора.
Зная напряжение ик, можно определить ток короткого замыкания в обмотке. Ток Iк1 будет во столько раз больше номинального тока I1, во сколько раз первичное напряжение Uх больше Uк. Так, например, если напряжение ик, равно 5%, ток /к. в 100:5=20 раз больше номинального тока 1х.
При напряжении, равном ик, интенсивность магнитного поля в магнитной системе невелика, поэтому намагничивающий ток и магнитные потери при коротком замыкании можно считать исчезающе малыми по сравнению с номинальными токами и вызываемыми ими потерями. Потери при коротких замыканиях рк соответствуют нагрузочным потерям трансформатора в номинальном режиме, поэтому общие потери трансформатора определяют как сумму потерь холостого хода и короткого замыкания: Рг=Р0+Рк-

Изменение напряжения трансформатора.

Как указывалось ранее, токи в обмотках создают не только потери, но и падения напряжений индуктивное и активное в электрическом сопротивлении. Между напряжением короткого замыкания и падениями напряжений существует зависимость:
,(Sн — номинальная мощность трансформатора, кВ-А; рк — потери к.з., кВт).
Оказывается, напряжение короткого замыкания характеризует еще один важный параметр — изменение напряжения 13ч вторичной обмотки, питающей потребителей. Изменением напряжения пары обмоток трансформатора называют арифметическую разность напряжений на зажимах вторичной обмотки при холостом ходе и нагрузке номинальным током (при этом напряжение первичной обмотки должно быть номинальным) и определяют по формуле

Стандартизация напряжений короткого замыкания.

Учитывая важную роль поля рассеяния в трансформаторе, напряжение короткого замыкания не может быть произвольным; иногда оно может быть большим (например, у потребителя с частыми короткими замыканиями) или относительно малым (например, в трансформаторах со спокойным режимом). Однако трансформаторы не могут изготовлять для каждого отдельного потребители, поскольку это дорого и технически нецелесообразно. Кроме того, в эксплуатации трансформаторы часто работают параллельными группами или их перебрасывают в другие места для работы с другими трансформаторами, а важнейшим условием, определяющим возможность параллельного соединения трансформаторов, является равенство напряжений короткого замыкании Uк.
В трансформаторах общего назначения напряжения короткого замыкания в зависимости от мощности и класса напряжения стандартизованы. Так, для трансформаторов мощностью 25—630 кВ-А с ВН 6 или 10 кВ напряжение к.з. составляет 4,5—4,7%, с ВН 35 кВ—6,5—6,8%, мощностью 6300 кВ-А с ВН 35 кВ—7,5%, мощностью 80 000 кВ-А — 0,5% и т. д.

Некоторые специальные трансформаторы, работающие в режимах с частыми короткими замыканиями, должны иметь но стандарту еще более высокие напряжения короткого замыкания— до 12 и даже 17%.
При изготовлении трансформаторов возможны допустимые отклонения в размерах, указываемые в сборочных чертежах. Например, обязательно содержатся допуски на диаметры и высоты обмоток, расстояния между обмотками, непосредственно влияющие на напряжение короткого замыкания. При наличии допусков на размеры получить точное значение указанного в стандарте напряжения короткого замыкания очень трудно, а иногда и невозможно, поэтому ГОСТы установили предельные отклонения этих напряжений; они могут отличаться от указанных в ГОСТе не более чем на ±10%.



 
« Решение научно-технического совета РАО ЕЭС России от 23.12.1994   Сварка шин »
Карта сайта + все метки | Контакты
© Электроэнергетика При перепечатке и цитировании активная гиперссылка на сайт обязательна.