Фото и видео

Новости (архив)


Контакты

contact@forca.ru

Содержание материала

2 РАСЧЕТ ТЕМПЕРАТУРЫ

2.1 Условные обозначения

2.1.1 Основные условные обозначения
А - амплитуда годового изменения среднесуточной температуры охлаждающей среды, °С;
В - амплитуда суточного изменения, °С;
ДХ - самый жаркий день в году;
Н - коэффициент температуры наиболее нагретой точки;
I - ток нагрузки, А;
К - коэффициент нагрузки (отношение тока нагрузки к номинальному току);
L - относительный износ за определенный период времени;
R - отношение нагрузочных потерь при номинальном токе к потерям холостого хода;
S - номинальная мощность, МВ×А;
ТХ - самое жаркое время суток;
V - относительная скорость износа;
W - количество стержней остова;
g - разность температур обмотки и масла, °С;
j - месяц года (используется при расчете износа и температуры наиболее нагретой точки на целый год);
t - продолжительность нагрузки на прямоугольном графике нагрузки;
z - сопротивление короткого замыкания, %;
q - температура, °С;
t - тепловая постоянная времени;
ON - обозначает виды охлаждения ONAN или ONAF,
OF - обозначает виды охлаждения OFAF или OFWF,
OD - обозначает виды охлаждения ODAF или ODWE.
2.1.2 Приставки
D - превышение температуры (по отношению к температуре охлаждающей среды).
2.1.3 Показатели степени
х - показатель степени суммарных потерь при расчете превышения температуры масла;
у - показатель степени коэффициента нагрузки при расчете превышения температуры обмотки;
‘ - относится к температуре наиболее нагретой точки для вида охлаждения OD.
2.1.4 Индексы (общие)
E - соответствует эквивалентной температуре охлаждающей среды;
M - соответствует температуре охлаждающей среды при расчете наиболее нагретой точки;
W - соответствует обмотке;
a - соответствует охлаждающему воздуху (температуре);
h - соответствует наиболее нагретой точке (температуре);
m - соответствует коэффициенту, используемому при расчете максимальной температуры наиболее нагретой точки;
о - соответствует маслу;
r - обозначает номинальное значение (если применяется, то всегда ставится последним);
t - соответствует температуре или превышению температуры в момент времени t,
у - соответствует ежегодному значению.
2.1.5 Специальные индексы для температуры масла (если применяется один из этих индексов, то всегда ставится первым)
i - масло внутри обмоток, в верхних слоях;
- средняя температура масла в обмотках;
b - масло в нижней части бака, обмотки или охладителя;
о - масло в верхней части бака;
от - средняя температура масла в баке;
е - масло в верхней части теплообменника;
ет - средняя температура в теплообменнике;
bt - температура масла в нижней части бака в момент времени t,
bi - начальная температура масла в нижней части бака;
bu - максимальная температура масла в нижней части бака.

2.2 Непосредственное измерение температуры наиболее нагретой точки

 

Наиболее значительным ограничением перегрузки трансформатора является температура наиболее нагретой точки обмотки: необходимо стремиться к тому, чтобы с возможно большей точностью определять эту температуру. В настоящее время начинают постепенно выполнять непосредственное ее измерение (оптическими волоконными светопроводами с датчиками или другими приборами аналогичного назначения). Такие измерения должны улучшить оценку температуры наиболее нагретой точки по сравнению с методами расчета, приведенными в п. 2.4.

2.3 Расчетные тепловые характеристики

 

2.3.1 Принятые упрощения
Следует иметь в виду, что формулы, приведенные в настоящем стандарте, основаны на ряде упрощений. Приведенная на рисунке 1 схема распределения температуры является упрощением более сложной действительной картины распределения температуры. Итак, приняты следующие упрощения:
а) температура масла внутри обмоток повышается линейно от нижней части к верхней независимо от вида охлаждения;
б) превышение температуры проводника увеличивается линейно по высоте обмотки и параллельно превышению температуры масла с постоянной разностью g между двумя прямыми линиями (g - разность между превышением средней температуры, измеренной методом сопротивления, и превышением средней температуры масла);
в) превышение температуры наиболее нагретой точки должно быть выше превышения температуры проводника в верхней части обмотки, как показано на рисунке 1, поскольку необходимо учесть увеличение дополнительных потерь. Для учета этих нелинейностей за разность температур наиболее нагретой точки и масла в верхней части обмотки принято обозначение Нg. Коэффициент Н может иметь значения от 1,1 до 1,5 в зависимости от мощности трансформатора, сопротивления короткого замыкания и конструкции обмотки. При построении графиков и составлении таблиц раздела 3 настоящего стандарта для распределительных трансформаторов использовано значение 1,1, для трансформаторов средней и большой мощности - 1,3.
2.3.2 Температура масла в верхних слоях, измеренная во время испытания, отличается от температуры масла, вытекающего из обмотки. Эта разность особенно заметна в течение неустановившегося режима в результате внезапного появления нагрузки большой амплитуды. Фактически масло в верхних слоях представляет собой смесь различных потоков масла, которые циркулируют вдоль и (или) снаружи разных обмоток.

Схема распределения температуры

Рисунок 1 - Схема распределения температуры

Разность между главными обмотками при охлаждении ON обычно незначительна. Для любой обмотки за температуру масла на выходе из обмотки принимается температура смеси масла в верхней части бака.
За температуру масла на выходе из обмотки при видах охлаждения OF и OD принимается температура масла в нижней части обмоток плюс удвоенная разность средней температуры масла в средней части рассматриваемой обмотки и температуры масла в нижней части обмотки.
В силу различий в распределении потоков масла разные виды охлаждений следует рассматривать отдельно. Предполагается, что в трансформаторах с охлаждением ОN и OF циркуляция масла в обмотке осуществляется термосифоном, а в трансформаторах с охлаждением OD - в основном насосом и практически не зависит от градиента температуры масла.
2.3.3 В трансформаторах с видами охлаждения OF и OD (среднюю температуру масла следует определять наилучшим из известных методов, так как от этого непосредственно зависит расчет температуры наиболее нагретой точки. В ГОСТ 3484.2 приведен ряд методов определения значения, используемого только при расчете некоторых поправок на превышение средней температуры обмотки. В настоящем стандарте использован в основном альтернативный метод (см. приложение В) определения средней температуры масла по результатам испытаний.

2.3.4 Поскольку тепловая постоянная времени обмоток обычно небольшая (от 5 до 10 мин), она оказывает на температуру наиболее нагретой точки только ограниченное влияние даже при повышенных кратковременных перегрузках. Продолжительность самой кратковременной перегрузки по таблицам допустимых нагрузок настоящего стандарта равна 30 мин (раздел 3); при расчетах значение тепловой постоянной времени принимают равным нулю.

2.3.5 Для расчета превышения температуры наиболее нагретой точки в постоянном, циклическом или другом режиме можно использовать тепловые характеристики, полученные из различных источников:
а) результатов специальных испытаний на нагрев, в том числе и непосредственных измерений температуры наиболее нагретой точки или температуры масла на выходе из обмоток (при отсутствии непосредственного измерения наиболее нагретой точки коэффициент наиболее нагретой точки N может быть сообщен только изготовителем);
б) результатов обычного испытания на нагрев;
в) значений превышения температуры при номинальном токе.
В таблице 2 приведены тепловые характеристики, которые использовались при составлении таблиц допустимых нагрузок раздела 3 настоящего стандарта. Следует отметить, что если для трансформаторов большой мощности превышение средней температуры обмотки при номинальном токе равно 65 °С для видов охлаждения ОN и OF и 70 °С - для вида охлаждения OD, то в зависимости от конструкции трансформатора превышение температуры наиболее нагретой точки при номинальном токе может составлять более 78 °С.

Таблица 2 Тепловые характеристики, используемые при составлении таблиц нагрузок раздела 3

Показатель

-

Трансформаторы

 

 

распределительные

средней и большой мощности

 

 

ONAN

ON

OF

OD

Показатель степени масла

x

0,8

0,9

1,0

1,0

Показатель степени обмотки

y

1,6

1,6

1,6

2,0

Отношение потерь

R

5

6

6

6

Коэффициент температуры наиболее нагретой точки

H

1,1

1,3

1,3

1,3

Тепловая постоянная времени масла

to, ч

3,0

2,5

1,5

1,5

Температура охлаждающей среды

qa, °C

20

20

20

20

Превышение температуры наиболее нагретой точки

Dqhr, °С

78

78

78

78

Превышение средней температуры обмотки

Dqwr, °C

65

63

63

68

Градиент температуры наиболее нагретой точки (масло на выходе из обмотки)

Hqr, °С

23

26

22

29

Превышение средней температуры масла

Dqimr, °C

44

43

46

46

Превышение температуры масла на выходе из обмотки

Dqir, °C

55

52

56

49

Превышение температуры масла в нижней части обмотки

Dqbr, °C

33

34

36

43

_______________
1) Для видов охлаждения ON значения Dqir принимают равным Dqor

2.4 Расчет температуры в установившемся тепловом режиме

 

2.4.1 Вид охлаждения ON
Для вида охлаждения ON максимальная температура наиболее нагретой точки при любой нагрузке К равна сумме температуры охлаждающей среды, превышения температуры масла в верхних слоях и разности температур наиболее нагретой точки и масла в верхних слоях
                                                (1)

2.4.2 Вид охлаждения OF
Для вида охлаждения OF метод расчета основан на температуре масла в нижней и средней частях обмотки и средней температуре масла, как указано в 2.3.2. Таким образом, максимальная температура наиболее нагретой точки при любой нагрузке К равна сумме температуры охлаждающей среды, превышения температуры масла в нижней части обмотки, разности температур масла на выходе из обмотки и в нижней части, а также разности температур наиболее нагретой точки и масла на выходе из обмотки
                            (2)

2.4.3 Вид охлаждения OD

Для вида охлаждения OD метод расчета, в основном, такой же, как и для вида охлаждения OF, за исключением того, что к значению qh, добавляется поправка на изменение омического сопротивления обмоток от температуры
 (при К>1)                                      (3)

где qh рассчитывают по формуле (2) без учета влияния изменений омического сопротивления;
qhr - температура наиболее нагретой точки при номинальной нагрузке. Для получения более точных результатов следует обращаться за консультацией к изготовителю.
2.4.4 Поправки к формулам расчета
При расчете максимальной температуры наиболее нагретой точки по приведенным выше формулам теоретически возможно вводить различные поправки, например, на изменение в зависимости от температуры:
а) нагрузочных потерь;
б) отношения омических потерь и потерь на вихревые токи в обмотке;
в) вязкости масла.
Для видов охлаждения ONи OF изменение вязкости при изменении температуры компенсируется изменением сопротивления обмоток. В настоящем стандарте эти два явления не принимаются во внимание.
Для вида охлаждения OD влияние вязкости масла на превышение температуры незначительно. Следует учитывать изменение омического сопротивления, например, введением поправки в формулу (3).

2.5 Расчет температуры в неустановившемся тепловом режиме

Любое изменение режимов нагрузки рассматривается как ступенчатая функция. Прямоугольный график нагрузки, используемый при составлении таблиц раздела 3 настоящего стандарта, состоит из одной ступени, направленной вверх, и через некоторое время одной ступени, направленной вниз. Для непрерывно изменяющейся нагрузки ступенчатая функция применяется к меньшим интервалам времени, а для расчета температуры наиболее нагретой точки требуется программа машинного расчета (см. 2.8).
Превышение температуры масла (например, в нижней части) в конце интервала времени t определяют по формуле
Превышение температуры масла
где Dqbi - начальное превышение температуры масла в нижней части;
Dqbu - установившееся превышение температуры масла в нижней части при нагрузке, прикладываемой в течение этого интервала времени;
t0 - постоянная времени масла.
При любом изменении нагрузки разность температур обмотки и масла изменяется и достигает нового значения с характерной постоянной времени обмотки. В соответствии с причинами, приведенными в 2.3.4, эта постоянная не принимается в расчет. Принимается, что значение коэффициента нагрузки Кy в последнем выражении формулы (1) и двух последних выражениях формулы (2) мгновенно достигает нового значения.

2.6 Термический износ изоляции трансформатора

 

2.6.1 Закон термического износа

Кроме всех других воздействий, которыми можно было бы пренебречь, изоляция подвергается термохимическому износу. Этот процесс является кумулятивным и приводит к недопустимому ее состоянию по некоторым критериям. Согласно закону Аррениуса, период времени до достижения этого состояния в зависимости от скорости химической реакции выражается формулой
Срок службы = е(α+β/T),                                                       (5)

где α и β - постоянные;
T - абсолютная температура.
Для ограничения диапазона температуры можно пользоваться более простым экспоненциальным отношением Монтсингер
Срок службы = е-rq,                                                         (6)

где r- постоянная;
q - температура, °С.
Примечание. В настоящем стандарте используется отношение Монтсингер, которое, по приведенному выше определению, является упрощением основного, используемого в других руководствах по нагрузке, закона Аррениуса относительно термохимического износа. Для рассматриваемого в настоящем стандарте диапазона температур использование отношения Монтсингер считается достаточным и, в сущности, дает оценку термического износа с запасом прочности.

Пока не существует единственного и простого критерия окончания срока службы, который мог бы быть использован для количественной оценки полезного срока службы изоляции трансформатора, однако можно сделать сравнения, основанные на скорости износа изоляции. Это величина, обратная сроку службы, выражаемая отношением Монтсингер
Скорость износа = постоянная ´ е-rq.
Значение постоянной в этом уравнении зависит от многих факторов: первоначального состава целлюлозных продуктов (смесь исходных материалов, химические добавки) и параметров окружающей среды (содержание влаги, свободного кислорода в системе).
Однако независимо от этих изменений в интервале температуры от 80 до 140 °С, соответствующей реальным условиям, коэффициентом изменения температуры допускается принимать постоянное значение r. При определении его значения учитывают тот факт, что скорость износа удваивается при каждом изменении температуры приблизительно на 6 °С; такое значение принято в настоящем стандарте.
Скорость износа определяется температурой наиболее нагретой точки. Для трансформаторов, соответствующих требованиям ГОСТ 11677, эталонное значение этой величины при номинальной нагрузке к нормальной температуре охлаждающей среды принимается равным 98 °С. В настоящем стандарте относительная скорость износа при этой температуре принимается равной единице.
Во многих трансформаторах применяется термически высококачественная изоляция. Поскольку в ГОСТ 3484.2 этот вид изоляции для масляных трансформаторов не рассматривается, то допустимые пределы превышения температуры, обусловленные улучшением термической стойкости изоляции, устанавливаются по согласованию между изготовителем и потребителем. В большинстве случаев трансформаторы с такой изоляцией имеют нормальный предполагаемый срок службы при базовой температуре наиболее нагретой точки 110 °С.
2.6.2 Относительная скорость термического износа изоляции

Для трансформаторов, отвечающих требованиям ГОСТ 11677, относительная скорость термического износа изоляции принята равной единице для температуры наиболее нагретой точки 98 °С, что соответствует работе трансформатора при температуре охлаждающей среды 20 °С и превышению температуры наиболее нагретой точки 78 °С. Относительная скорость износа определяется по формуле
.                                         (7)

Из данных, приведенных ниже, следует, что эта формула содержит значительную зависимость относительной скорости износа изоляции от температуры наиболее нагретой точки:

qh

Относительная скорость износа изоляции

80

0,125

86

0,25

92

0,5

98

1,0

104

2,0

110

4,0

116

8,0

122

16,0

128

32,0

134

64,0

140

128,0

2.6.3 Расчет сокращения срока службы
Сокращение срока службы, вызванное месячной, суточной или часовой нагрузкой при температуре наиболее нагретой точки 98 °С, выражается «нормальными» месяцем, сутками или часами.
Если нагрузка и температура охлаждающей среды постоянны в течение определенного периода времени, то относительное сокращение срока службы равно Vt, где t - рассматриваемый период времени. То же самое относится к постоянному режиму нагрузки при изменяющейся температуре охлаждающей среды, если при этом используется базовое значение температуры охлаждающей среды (см. 2.7).
Обычно, когда изменяется режим нагрузки и температура охлаждающей среды, относительная скорость сокращения срока службы изменяется во времени. Относительный износ изоляции (или относительное сокращение срока службы) в течение определенного периода времени составит
, или                                            (8)

где п - порядковый номер интервала времени;
N - общее количество равных интервалов времени.

2.7 Температура охлаждающей среды

 

2.7.1 Общие положения
Для трансформаторов наружной установки с воздушным охлаждением за температуру охлаждающей среды принимается действительная температура воздуха. Для распределительных трансформаторов внутренней установки поправка на температуру охлаждающей среды приведена в 2.7.6. Для трансформаторов с водяным охлаждением за температуру охлаждающей среды принимается температура воды на входе в теплообменник, которая во времени изменяется меньше, чем температура воздуха.
При перегрузке продолжительностью более нескольких часов следует учитывать изменение температуры охлаждающей среды. По желанию потребителя эти изменения можно учитывать при помощи одного из следующих методов:
а) использовать для расчета термического износа изоляции эквивалентную температуру охлаждающей среды; для расчета максимальной температуры наиболее нагретой точки использовать эквивалентную температуру охлаждающей среды и среднее значение месячных максимумов (2.7.2 и 2.7.5);
б) допускается непосредственно использовать кривую изменения фактической температуры (2.7.4);
в) допускается получить приблизительное значение изменяющейся температуры охлаждающей среды при помощи двойной синусоидальной функции (2.7.5).
2.7.2 Эквивалентная температура охлаждающей среды qE

Если температура охлаждающей среды заметно изменяется при перегрузках, в тепловом расчете следует использовать ее эквивалентное значение, так как оно будет больше среднеарифметического значения.
Эквивалентная температура охлаждающей среды - это условно постоянная температура, которая в течение рассматриваемого периода времени вызывает такой же износ изоляции, как и изменяющаяся температура охлаждающей среды за такой же промежуток времени (сутки, месяц или год).
Если с увеличением температуры на 6 °С скорость износа изоляции удваивается и можно предположить, что изменение температуры охлаждающей среды происходит по синусоидальной форме, то эквивалентную температуру охлаждающей среды определяют по формуле
,                                                         (9)

где q - средняя температура;
 - отклонение температуры за рассматриваемый период (разность средних значений максимума и минимума).
Поправочный коэффициент на среднюю температуру может быть также определен по кривой, изображенной на рисунке 2, который является иллюстрацией приведенной выше формулы.

Поправочный коэффициент на среднюю температуру трансформатора

Рисунок 2 - Поправка на среднюю температуру для получения эквивалентной температуры
2.7.3 Температура охлаждающей среды для расчета наиболее нагретой точки qm
Эквивалентная температура охлаждающей среды может быть использована для расчета термического износа изоляции, но не может быть использована для контроля максимальной температуры наиболее нагретой точки в период перегрузки. Для такого контроля рекомендуется принимать среднее значение месячных максимумов. Использование абсолютного максимума не считается целесообразным вследствие малой вероятности его появления и влияния тепловой постоянной времени.
2.7.4 Непрерывно изменяющаяся температура охлаждающей среды
Если расчеты износа изоляции и температуры наиболее нагретой точки производятся для нагрузки продолжительностью, превышающей номинальное значение на несколько суток, то использование предусмотренной на этот период реальной кривой изменения температуры может быть более приемлемым. В таком случае кривая изменения температуры охлаждающей среды должна быть представлена рядом отдельных значений, соответствующих интервалу времени, выбранному для определения изменения нагрузки.

2.7.5 Синусоидальное изменение температуры охлаждающей среды

Для вычислений, проводимых на многие сутки или месяцы наперед, более удобно рассматривать температуру охлаждающей среды, представляемую двумя синусоидальными функциями (первая характеризует годичное, вторая - суточное изменение температуры)
                     (10)

где qay - среднегодовая температура охлаждающей среды, °С;
А - амплитуда годового изменения среднесуточной температуры охлаждающей среды, °С;
В - амплитуда суточного изменения для расчета скорости износа изоляции, °С;
Вт - амплитуда суточного изменения для расчета максимальной температуры наиболее нагретой точки, °С;
ДХ - самый жаркий день в году;
ТХ - самое жаркое время суток;
cутки - порядковый номер суток с начала года (например, 1 февраля = 32);
час - время суток (например, 13 ч 15 мин = 13,25).
Расчет этих параметров производят по отдельной программе, приведенной в приложении D, введением четырех типичных значений температур для каждого месяца года.
2.7.6 Поправка на температуру охлаждающей среды для трансформаторов внутренней установки

Трансформатор, предназначенный для установки в помещении, подвергается дополнительному перегреву, значение которого составляет около половины значения превышения температуры воздуха в этом помещении. Испытания показали, что дополнительный перегрев масла в верхних слоях изменяется под действием тока нагрузки приблизительно так же, как изменяется превышение температуры в верхних слоях.
Для трансформаторов, установленных в металлическом или бетонном помещении, можно использовать формулу (1), заменив Dqor на :
,
где  - дополнительный перегрев масла в верхних слоях при номинальной нагрузке. Этот дополнительный перегрев рекомендуют определять во время испытаний, однако если результаты таких испытаний отсутствуют, допускается в качестве справочных использовать значения, приведенные в таблице 3. Приблизительное значение дополнительного перегрева масла в верхних слоях получают делением значений, приведенных в таблице 3, на два.

Таблица 3 - Поправки на температуру охлаждающей среды для трансформаторов внутренней установки

 

Вид помещения

Количество установленных

Поправка (добавляется к эквивалентной температуре охлаждающей среды), °С

 

трансформаторов

номинальная мощность трансформатора, кВ·А

 

 

250

500

750

1000

Подземные камеры с

1

11

12

n

14

естественной вентиляцией

2

12

13

14

16

 

3

14

17

19

22

Подвальные этажи и

1

7

8

9

10

сооружения с незначительной

2

8

9

10

12

естественной вентиляцией

3

10

13

15

17

Сооружения с хорошей естественной вентиляцией,

1

3

4

5

6

подземные камеры и подвальные этажи с

2

4

5

6

7

принудительной вентиляцией

3

6

9

10

13

Трансформаторные киоски (см. примечание 2)

1

10

15

20

-

Примечания
1. Приведенные выше значения температурных поправок были рассчитаны для типичных режимов нагрузки подстанций с использованием характерных значений потерь в трансформаторах. Поправки получены в результате проведения серии испытаний с естественным и принудительным охлаждением в подземных камерах и закрытых подстанциях, а также в результате выборочных измерений, проводимых на подстанциях и в трансформаторных киосках.
2. Если испытание на нагрев было проведено на трансформаторе, установленном в киоске, как на едином собранном устройстве, внесение поправки на температуру внутри киоска не требуется.

 

2.8 Программа машинного расчета

2.8.1 Логическая схема
Расчет коэффициентов нагрузки применительно к данному трансформатору при заданном графике нагрузки с учетом изменения температуры охлаждающей среды, заданного ограничения температуры наиболее нагретой точки и износа производится методом итерации, при выполнении которого необходимо использование компьютера. Логическая схема такого метода итерации, включающая основные принципы, установленные настоящим стандартом, показана на рисунке 3.
Подобный метод итерации используется при выборе проектировщиком номинальных значений параметров для новых трансформаторов, если известны режимы нагрузки и температура охлаждающей среды.
Программа должна быть составлена таким образом, чтобы потребитель смог ввести исходные тепловые характеристики трансформатора, график нагрузки на заданный период, характер изменения температуры охлаждающей среды на этот период, а также необходимые, по его мнению, специальные ограничения температуры и износа.
Максимальную температуру наиболее нагретой точки и относительный износ рассчитывают для заданного графика нагрузки. Если максимальная температура не превышена и износ ниже принятого предельного значения, расчет повторяют при увеличенном значении множителя F,применяемого к каждой отдельной нагрузке К1 К2,..., Кn через постоянные интервалы времени t1, t2..., tn. Множитель F повышают ступенями на 1 % для каждой итерации до тех пор, пока не будет достигнут один из пределов. Если при начальном расчете относительный износ больше принятого значения, расчет повторяют, используя уменьшенное до 2 % значение F.
Увеличение на множитель нагрузки и допуски на предельную температуру могут быть выбраны по-разному, в зависимости от типа трансформатора и параметров нагрузки. Составителю программы следует учитывать, что при температуре наиболее нагретой точки в пределах от 100 до 140 °С с увеличением коэффициента нагрузки на 2 % максимальная температура наиболее нагретой точки увеличивается более чем на 2 °С, а относительный износ приблизительно на 25 %.

 

Начало

 

 

 

 

 

 

ВВОД ДАННЫХ
Характеристики трансформатора
Вид охлаждения: ONAN, ONAF, OF или OD
Dqor - превышение температуры масла в верхних слоях при номинальном токе для видов охлаждения ONAN и ONAF;
Dqbr - превышение температуры масла в нижних слоях при номинальном токе для видов охлаждения OF и OD;
Dqimr – превышение средней температуры масла при номинальном токе;
Hgr – разность температур наиболее нагретой точки и масла на выходе при номинальном токе;
х – показатель степени при расчете температуры масла;
y – показатель степени при расчете температуры обмотки;
R – отношение нагрузочных потерь к потерям холостого хода;
t0 – тепловая постоянная времени масла, ч;
qhr – номинальная температура наиболее нагретой точки при скорости износа, равной единице (98 °С, 110 °С или другое соответствующее базовое значение (см. 2.6.1)

Цикл нагрузки
Продолжительность цикла, количество интервалов в цикле, значение нагрузки в относительных единицах для каждого интервала;

Температура охлаждающей среды
Эквивалентная температура охлаждающей среды и суточная температура (qE, qM) или температура охлаждающей среды для каждого интервала цикла нагрузки или характеристики для расчета по методу двойной синусоиды (qay, А, В, Вт, ДХ, ТХ)

Ограничения
qhмакс - максимально допустимая температура наиболее нагретой точки;
qомакс - максимально допустимая температура масла в верхних слоях;
Lмакс - максимально допустимый относительный износ;
F - уточнить, имеет ли множитель нагрузки установленное значение F = 1.


Рисунок 3 - Логическая схема программы машинного расчета коэффициента допустимой нагрузки

Логическая схема программы машинного расчета коэффициента допустимой нагрузки

Продолжение рисунка 3

схема программы машинного расчета коэффициента допустимой нагрузки

Окончание рисунка 3

Следует принимать такие допуски, чтобы избежать колебания результатов, обеспечивая при этом достаточную точность. При проверке программы с примерами, приведенными в таблицах 4 и 5, желательно получить более высокую точность, уменьшая эти допуски.
При расчете может быть использован не только метод итерации, но и другие альтернативные методы, если они дают аналогичные результаты.
2.8.2 Примеры расчета
Для того, чтобы показать диапазон значений входных и выходных данных и дать возможность потребителю проверить свою программу, в таблицах 4 и 5 приведены примеры расчета.
В первом примере (таблица 4) приведен простой расчет нагрузки за одни сутки с постоянной температурой охлаждающей среды и простым графиком нагрузки.
Второй пример (таблица 5) является расчетом нагрузки за целый год с тремя различными графиками нагрузки в течение года и температурой охлаждающей среды, представленной двойной синусоидальной функцией.

Таблица 4 - Данные для расчета нагрузки за одни сутки при постоянной эквивалентной температуре охлаждающей среды

*** Ввод (1) *** Номинальные характеристики и данные трансформатора
категория трансформатора: распределительный;
вид охлаждения: ONAN

Dqor

- превышение температуры масла в верхних слоях, °С

55,00

Dqimr

- превышение средней температуры масла, °С

44,00

Hqr

- разность температур наиболее нагретой точки и масла в верхних слоях, °С

23,00

х

- показатель степени при расчете температуры масла

0,80

у

- показатель степени при расчете температуры обмотки

1,60

R

- отношение нагрузочных потерь к потерям холостого хода

5,00

t0

- тепловая постоянная времени масла, ч

3,00

qhr

- температура наиболее нагретой точки нормального износа, °С

98,00

*** Ввод (2) *** Заданный график нагрузки

 

Начало

Конец

Продолжительность, ч

Нагрузка, отн. ед.

1

0:00

12:00

12,00

0,70

2

12:00

14:00

2,00

1,340

3

14:00

24:00

10,00

0,700

*** Ввод (3) *** Данные температуры охлаждающей среды

qE

- эквивалентная температура охлаждающей среды, °С

30,00

qамакс

- максимальная суточная температура, °С

40,00

*** Ввод (4) *** Ограничения по температуре и нагрузке

qомакс

- предельная температура масла в верхних слоях, °С

115,00

qhмакс

- предельная температура наиболее нагретой точки, °С

140,00

Lмакс

- предельный относительный износ

1,00

F

- множитель кривой нагрузки (постоянная или изменяющаяся величина)

ПОСТОЯННАЯ

*** Вывод ***

Температура масла в верхних слоях, макс, °С

Температура наиболее
нагретой точки, макс,°С

Относительный износ
за сутки, отн. ед.

98,35

135,08

0,935

 

Температура масла в верхних слоях, °С

Температура наиболее нагретой точки, °С

1

75,34

88,34

2

98,35

135,08

3

76,15

89,15

Таблица 5 - Данные для расчета нагрузки на полный год при температуре охлаждающей среды, определяемой методом двух синусоид, и по трем различным графикам нагрузки

*** Ввод (1) *** Номинальные характеристики и данные трансформатора
категория трансформатора: распределительный;
вид охлаждения: ONAN

Dqor

- превышение температуры масла в верхних слоях, °С

55,00

Dqimr

- превышение средней температуры масла, °С

44,00

Hqr

- разность температур наиболее нагретой точки и масла в верхних слоях, °С

23,00

х

- показатель степени при расчете температуры масла

0,80

у

- показатель степени при расчете температуры обмотки

1,60

R

- отношение нагрузочных потерь к потерям холостого хода

5,00

t0

- тепловая постоянная времени масла, ч

3,00

qhr

- температура наиболее нагретой точки нормального износа, °С

98,00

*** Ввод (2) *** Заданный график нагрузки

Период 1

1/1

17/4*

ПРОДОЛЖИТЕЛЬНОСТЬ
(в сутках):

107

 

Начало

Конец

Продолжительность, ч

Нагрузка, отн. ед.

1

0:00

8:00

8,00

0,700

2

8:00

11:00

3,00

1,000

3

11:00

14:00

3,00

0,800

4

14:00

16:00

2,00

1,360

5

16:00

19:30

3,50

0,850

6

19:30

24:00

4,50

0,700

Период 2

18/4

17/10

ПРОДОЛЖИТЕЛЬНОСТЬ
(в сутках):

183

 

Начало

Конец

Продолжительность, ч

Нагрузка, отн. ед.

1

0:00

10:00

10,00

0,700

2

10:00

13:00

3,00

1,000

3

13:00

15:00

2,00

1,360

4

15:00

20:00

5,00

0,900

5

20:00

24:00

4,00

0,700

Период 3

18/10

31/12

ПРОДОЛЖИТЕЛЬНОСТЬ
(в сутках):

75

 

Начало

Конец

Продолжительность, ч

Нагрузка, отн. ед.

1

0:00

8:00

8,00

0,700

2

8:00

11:00

3,00

1,000

3

11:00

14:00

3,00

0,800

4

14:00

16:00

2,00

1,360

5

16:00

19:30

3,50

0,850

6

19:30

24:00

4,50

0,700

17/4* - 17 апреля

 

*** Ввод (3) *** Данные температуры охлаждающей среды

qau

- среднегодовая температура охлаждающей среды, °С

11,47

А

- амплитуда годового изменения, °С

8,05

В

- амплитуда суточного изменения при расчете износа, °С

5,10

Вm

- амплитуда суточного изменения при расчете максимальной температуры, °С

11,15

DX

- самый жаркий день в году

199

ТХ

- самое жаркое время дня

14:00

*** Ввод (4) *** Ограничения температуры и нагрузки

qомакс

- предельная температура масла в верхних слоях, °С

115,00

qhмакс

- предельная температура наиболее нагретой точки, °С

140,00

Lмакс

- предельный относительный износ, отн. Ед.

1,00

F

- множитель кривой нагрузки (постоянная или изменяющаяся величина)

ПОСТОЯННАЯ

*** Вывод ***

Период

Начало

Конец

Температура масла в верхних слоях, макс, °С

Температура наиболее нагретой точки, макс, °С

Относительный износ, отн. ед.

1

1/1

17/4

84,77

122,39

0,237

2

18/4

17/10

96,20

133,82

1,160

3

18/10

31/12

84,84

122,46

0,266

Относительный износ за год L = 0,706 отн. ед.

Период 1

Температура масла в верхних слоях, °С

Температура наиболее нагретой точки, °С

1

46,89

59,89

2

67,28

90,28

3

66,52

82,61

4

84,77

122,39

5

63,29

81,03

6

40,12

53,12

Относительный износ за период L (1) = 0,237 отн. ед.

Период 2

Температура масла в верхних слоях, °С

Температура наиболее нагретой точки, °С

1

60,72

73,72

2

78,40

101,40

3

96,20

133,82

4

70,78

90,21

5

49,13

62,13

Относительный износ за период L (2) = 1,160 отн. ед.

Период 3

Температура масла в верхних слоях, °С

Температура наиболее нагретой точки, °С

1

46,96

59,96

2

67,34

90,34

3

66,59

82,68

4

84,84

122,46

5

63,36

81,10

6

40,19

53,19

Относительный износ за период L (3) = 0,266 отн. ед,