Поиск по сайту
Начало >> Книги >> Оборудование >> Выключатели высокого напряжения

Вакуумные выключатели - Выключатели высокого напряжения

Оглавление
Выключатели высокого напряжения
Баковые масляные выключатели
Маломасляные выключатели
Приводы масляных выключателей
Воздушные выключатели
Элегазовые выключатели
Электромагнитные выключатели
Вакуумные выключатели
Синхронизированные выключатели
Выключатели нагрузки
Выбор выключателей

 

8. ВАКУУМНЫЕ ВЫКЛЮЧАТЕЛИ

В вакуумных выключателях контакты расходятся в среде с давлением 10~4 Па. При таком вакууме дугогасительный промежуток имеет очень высокую электрическую прочность — примерно 100 кВ/мм. Малая плотность воздуха создает возможность гашения дуги без ДУ за время 0,01— 0,02 с. Все это дает возможность создать выключатели с малым износом контактов, работающие при минимальном техническом обслуживании в течение нескольких десятков лет. Это определяет перспективность развития и широкого применения вакуумных выключателей. Процесс гашения дуги в вакууме рассмотрен ранее. Здесь добавим, что образующиеся под действием высокой температуры ионы движутся к электродам, создавая вблизи них соответствующие объемные заряды. Поток электронов направляется к аноду и производит его бомбардировку. Освобождающиеся из анода положительные ионы движутся к катоду и разрушают его. Эти процессы определяют срок службы контактов.
Следует отметить, что высокие значения напряженности электрического поля (при малых расстояниях между контактами) являются также причиной возникновения дуги в вакууме благодаря автоэлектронной эмиссии.

Малая плотность среды обусловливает очень высокую скорость диффузии зарядов из-за большой разницы плотностей частиц в разряде и вакууме. Быстрая диффузия частиц, высокая электрическая прочность вакуума позволяют эффективно гасить дугу в вакуумном выключателе.
Для работы вакуумного выключателя имеет большое значение дегазация контактов, так как адсорбированные ими газы при разогреве выделяются и ухудшают вакуум. С целью удаления газовых включений из контактов их нагревают в течение нескольких часов до красного каления.
При работе выключателя распыленные материалы контактов осаждаются на поверхности изоляционного цилиндра, что создает возможность перекрытия изоляции. Для защиты цилиндра от паров металла электроды защищаются специальными металлическими экранами 8, 9 (рис. 27). При отсутствии экранов электрон, разгоняясь в электрическом поле по длинному пути, приобретает высокую энергию и при столкновении с молекулой может вызывать ее ионизацию. Благодаря экранам 8 и 9 электрическое поле разбито на два небольших участка (между электродами 9 и 8 и между электродами 8 и 9). Возможность перекрытия внутри камеры резко снижается.
При переменном токе после прохождения тока через нуль происходит быстрое рассасывание зарядов вследствие диффузии, и через 10 мкс между контактами восстанавливается электрическая прочность вакуума. Быстрое нарастание электрической прочности промежутка после прохождения тока через нуль является большим достоинством вакуумных выключателей.
Для вакуумной дуги характерен обрыв (срез) тока при подходе к нулевому значению. При уменьшении тока падает давление паров металла, дуга становится неустойчивой и гаснет. Резкие уменьшения тока могут вызывать перенапряжения, опасные для отключаемого оборудования. Ток среза зависит как от параметров отключаемой цепи, так и от свойств материала контактов. Вольфрам обладает устойчивостью к свариванию, высокой температурой плавления и износостойкостью. Однако при вольфрамовых контактах значения тока среза и перенапряжений очень высоки, так как пары вольфрама создают низкое давление. Перенапряжения при медных контактах в 2,5 раза ниже, но они более подвержены свариванию и износу. Эти противоречия устраняются, если часть контактной поверхности выполнена из дугостойкого   металла   (молибден), а другая часть — из материала с высоким давлением паров (сурьма). Хорошие результаты дает специальная металлокерамика. Наличие вакуума ухудшает охлаждение контактов. Однако за счет увеличения размеров подводящих шин, совершенствования конструкции ДУ и контактных материалов удается довести длительные токи до необходимых значений.
В вакуумной дугогасительной камере (рис. 27) контактный стержень 4 с контактным наконечником 1—2 жестко укреплен в металлическом фланце 6 керамического корпуса 10. Контактный стержень подвижного контакта 5 связан с сильфоном 7, выполненным из нержавеющей стали. Сильфон представляет собой цилиндрическую эластичную гармошку. Поэтому стержень 5 имеет возможность осевого перемещения. Внутренняя полость сильфона связана с атмосферой, поэтому контакт 3 верхнего контакта нажимает на контакт 3 нижнего контакта с силой, равной произведению площади сильфона Sc на атмосферное давление. Допустим, Sc=100 см2, тогда контактное нажатие равно 1000 Н, что достаточно для пропускания небольшого номинального тока. При больших номинальных токах и для получения необходимой динамической стойкости ставится дополнительная пружина, создающая необходимое нажатие контактов. Металлические экраны 8 и 9 служат для выравнивания электрического поля между контактами с целью повышения электрической прочности. Экран 8 защищает также керамику 10 от напыления паров металла, образующихся при гашении дуги. Контакты 1 и 2 имеют форму, показанную на рис. 28. Касание контактов 1 происходит в шести точках, что позволяет снизить переходное сопротивление и уменьшить температуру контактов. Следует отметить, что тепло, выделяемое в контактах 1, V и контактных стержнях 4, 5, отводится в основном теплопроводностью к нижнему фланцу 6 и шинам, соединяемым с контактом 5. Из-за высокого вакуума отдача тепла в радиальном направлении идет только за счет излучения.

Вакуумная дугогасительная камера
Рис. 27. Вакуумная дугогасительная камера
Контакты ДУ
Рис. 28. Контакты ДУ

Поперечное магнитное поле в месте перехода тока из контакта 1 в контакт 1' быстро перебрасывает дугу на криволинейные сегменты 2 (рис. 28). Перемещение дуги по контактам с большой скоростью позволяет уменьшить эрозию контактов и снизить количество паров металла в вакуумной дуге. При таких контактах удалось поднять номинальный ток отключения до 31,5 кА при напряжении 10 кВ. Однако при больших токах отключения напряжение на дуге начинает расти с увеличением тока (до 100В и выше). При этом энергия дуги увеличивается, процесс гашения затрудняется. Как показали исследования, если мощная вакуумная дуга находится в продольном магнитном поле (индукция направлена по оси камеры), то удается снизить напряжение на дуге при больших токах (до 50 В) и отключать токи 100 кА при напряжении сети 10 кВ [9].

Параметры камеры КДВ-10-1600-20
Номинальное напряжение, кВ.............. 10
Номинальный ток отключения, кА............. 20
Длительный ток, кА, при дополнительном поджатии контактов
1600 Н     ...................... 1,6
Средний ток среза, А, не более............. 10
Электрическая износостойкость, циклов ВО:
при токе 1600 А..............., 10000
при токе 20 кА................., 25
Механическая износостойкость, циклов ВО......... 2-104
Допустимый износ контактов,   мм............ 4
Ход подвижного контакта,   мм............. 12
Скорость подвижного контакта, м/с:
при включении................ 0,5—0,7
при   отключении............... 2
Срок   службы ДУ, лет..............        25

Общий вид выключателя, использующего ДУ по рис. 27, дан на рис. 29. Дугогасительные камеры 1, залитые в эпоксидный компаунд, имеют выходные контакты 2 в виде розеток. ДУ укреплены на тележке 3, в которой расположены механизм и привод выключателя.
Параметры вакуумных ДУ приведены в [3.1]. Высокая износостойкость вакуумных ДУ позволила создать вакуумные контакторы, примером которых может быть трехфазный контактор КВТ-6/10-400-4-У2 со следующими параметрами: номинальное напряжение 6 и 10 кВ; номинальный ток 400 А; номинальный ток отключения 4 кА; коммутационная износостойкость при номинальном токе 105 циклов ВО, при токе 4 кА—50 циклов ВО; механическая износостойкость 106 циклов ВО; частота включений в час 300.

Вакуумный выключатель
Рис. 29. Вакуумный выключатель

В настоящее время ведутся работы по увеличению номинального напряжения одного разрыва выключателя до 80 кВ при токе отключения 40 кА.
В заключение следует отметить следующие преимущества вакуумных выключателей перед другими типами:
1) отсутствие специальной дугогасящей среды, требующей замены;
2) высокая износостойкость, обеспечивающая срок службы выключателей до 25 лет при минимальных эксплуатационных затратах;
3) быстрое восстановление электрической прочности междуконтактного промежутка;
4) полная взрыво- и пожаробезопасиость, отсутствие выбросов продуктов горения дуги в окружающее пространство;
5) высокое быстродействие, обусловленное малой массой контактов и их малым ходом;
6) широкий диапазон рабочих температур — от 70 до +200 °С.
К недостаткам можно отнести: возникновение больших перенапряжений при отключении индуктивной нагрузки, что может приводить к повреждению изоляции; большие трудности при создании выключателей на номинальное напряжение 100 кВ и выше, когда приходится соединять несколько разрывов последовательно; сложность разработки и изготовления, большие затраты для организации производства. Тем не менее при массовом производстве себестоимость вакуумного выключателя приближается к себестоимости маломасляных и электромагнитных. При напряжении до 35 кВ вакуумный выключатель является наиболее перспективным, особенно при отключении больших токов высокой частоты.
При массовом производстве вакуумные выключатели всего на 5—15% дороже маломасляных и дешевле электромагнитных. Экономия эксплуатационных расходов обусловливает все более широкое распространение вакуумных выключателей (в Японии 50 % всех выключателей вакуумные).



 
« Выбор и применение ОПН в распредсетях СН   Выключатели и измерительные трансформаторы в КРУ 6-220 кВ »
Карта сайта + все метки | Контакты
© Электроэнергетика При перепечатке и цитировании активная гиперссылка на сайт обязательна.