Поиск по сайту
Начало >> Оборудование >> Инструменты и механизмы >> Малогабаритный хроматографический комплекс для анализа газов

Малогабаритный хроматографический комплекс для анализа газов

СОСТАВ КОМПЛЕКСА

  1. Малогабаритный газовый хроматограф МХ-ТМ с пламенно-ионизационным, термохимическим детекторами и детектором по теплопроводности
  2. Хроматографические колонки для разделения определяемых газов
  3. Баллоны с градуировочными смесями
  4. Устройство выделения газов из масла
  5. Контейнеры для транспортировки масла в шприцах
  6. Стеклянные шприцы емкостью 20 мл
  7. Персональный компьютер
  8. Четырехканальное устройство сопряжения хроматографа с компьютером
  9. Программное обеспечение, включающее программу обработки хроматографической информации, базу данных по обследуемому электрооборудованию, программу оценки состояния трансформаторного оборудования на основании РД 34.46.302-89
  10. Руководство по эксплуатации комплекса.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПЛЕКСА


нижний предел обнаружения в трансформаторных маслах:

водорода

- 0,0005 % об.

метана, этана, этилена

- 0,0001 % об.

ацетилена

- 0,00005 % об.

оксида и диоксида углерода

- 0,002 % об.

- время выхода на рабочий режим

- не более 2 ч.

- время на проведение одного анализа

- не более 15 мин.

- габаритные размеры хроматографа МХ-ТМ

- 180 х 470 х 370 мм

- вес хроматографа МХ-ТМ

- не более 14 кг

Существующие методы анализа воды в масле [1,2], как правило, ограничиваются в основном суммарным определением растворенной и эмульгированной воды. Эти методы не дают возможности индивидуального определения связанной и общей воды. Из вышеизложенного вытекает необходимость разработки методики определения в масле не только растворенной и эмульгированной, но и связанной воды.
НПФ "ЭЛЕКТРА” была разработана газохроматографическая методика анализа воздуха и воды, растворенных в трансформаторных маслах, которая не только соответствует требованиям РД 34.43.107-95, но и позволяет определять совместно растворенную и эмульгированную воду, а также общее содержание в масле воды, включая связанную воду.
Эта методика основана на прямом вводе пробы масла в испаритель хроматографа при разных температурах испарителя. Температура испарителя выбирается в зависимости от конструкции каждого конкретного хроматографа. Проба масла (20-100 мкл), введенная в испаритель хроматографа, переходит в парообразное состояние и выделенные из нее воздух и вода разделяются на хроматографической колонке. После разделения воздух и вода переносятся газом-носителем (гелием) в детектор по теплопроводности (ДТП). Типичные хроматограммы определения воздуха и воды в трансформаторном масле приведены на рис.З.
Для предотвращения попадания анализируемого масла в разделительную колонку и возможности поддержания высокой температуры в испарителе хроматографа перед основной разделительной колонкой устанавливается предколонка, заполненная диатомитовым носителем. Поскольку масло вводится в испаритель ’’напрямую”, то через какое-то время необходимо проводить регенерацию системы для его удаления. В испаритель допустимо вводить суммарно до 0,6 мл масла, после чего проводится регенерация предколонки с целью удаления из нее масла. Эта операция выполняется в режиме обратной продувки газом- носителем при повышенных температурах испарителя и детектора. Время регенерации составляет 3-4 часа.
Градуировка хроматографа по воздуху осуществляется специальным микродозатором, позволяющим вводить дозы воздуха от 0,5 до 20 мкл. Устройство, обеспечивающее проведение градуировки хроматографа по воздуху и регенерации хроматографической системы после введения в нее масла "напрямую”, разработано, выпускается и внедряется НПФ "ЭЛЕКТРА". Данное устройство является основным элементом установки для определения воздуха и воды в трансформаторных маслах.
хроматограмма определения воздуха и воды в трансформаторном масле
Рис. 3 Типичная хроматограмма определения воздуха и воды в трансформаторном масле.

хроматограмма определения ионола в трансформаторном
Рис. 4 Типичная хроматограмма определения ионола в трансформаторном
масле.

Нами также разработана методика, позволяющая определять растворенный в масле ионол [ 3 ]. В хроматограф вводится не непосредственно масло, а спиртовой экстракт из него. В этом случае отсутствует необходимость в защите разделительной колонки и детектора хроматографа с помощью предколонки.
Ионол извлекается из масла экстракцией. Время расслоения фаз после проведения экстракции составляет не более 2 часов. Анализ ведется на газовом хроматографе с пламенно-ионизационным детектором (ДИП) или с ДТП. В качестве газа-носителя можно использовать гелий, а также аргон или азот при работе с ДИП. Хроматограмма определения ионола в трансформаторном масле приведена на рис.4.
Градуировка хроматографа проводится по раствору ионола в спирте. При градуировке рассчитывается поправочный коэффициент чувствительности по ионолу.
Разработанные методики активно используются в АО ВНИИЭ для оценки        эксплуатационного         состояния   высоковольтного маслонаполненного электрооборудования по программам РАО "ЕЭС России”. Данные методики готовы к внедрению, как на хроматографах потребителей, так и с поставкой хроматографов, адаптированных к этим методикам.
В заключение следует отметить, что возможности хроматографии для исследования и последующей оценки состояния трансформаторных масел и других изоляционных материалов далеко не исчерпаны. В настоящее время все исследователи опираются на оценку состояния трансформаторов и вводов по тем компонентам, которые давно известны. В то же время этот набор соединений не всегда дает возможность надежно и полноценно оценивать состояние ряда видов высоковольтного маслонаполненного оборудования (реактора, вводы). Поэтому, на наш взгляд, весьма перспективным является направление дальнейшего изучения появляющихся в процессе эксплуатации в масле соединений и поиска корреляций между их появлением в масле и возможными дефектами оборудования.

ЛИТЕРАТУРА

  1. ГОСТ 7822-75. Масла нефтяные. Метод определения содержания растворенной воды.- Изд. стандандартов, 1983.
  2. Публикация МЭК 814.
  3. Бузаев В.В., Львов Ю.Н., Смоленская Н.Ю., Сапожников Ю.М. Газохроматографический анализ трансформаторного масла на содержание в нем ионола.- Электрические станции, 1996, N 1, с.51.
 
« ЛСК 1-600   Машина АКР »
Карта сайта + все метки | Контакты
© Электроэнергетика При перепечатке и цитировании активная гиперссылка на сайт обязательна.