Фото и видео

Новости (архив)


Контакты

contact@forca.ru

В. К. Козлов, Г. А. Муратавва, ГОУ ВПО «Казанский государственный энергетический университет»
У трансформаторов, которые проработали много лет и процесс эксплуатации которых сопровождался периодической доливкой или частичной и даже полной заменой масла, однозначно определить марку масла практически невозможно.
В полном объеме сведения можно получить только на заводах-изготовителях оборудования, что через 20-40 лет после изготовления весьма проблематично.
Уверенно можно говорить только о марках масла, залитого в трансформатор на заводе-изготовителе на основании отметки, сделанной в заводском паспорте или же в документации шефмонтажа при первом включении трансформатора.
Получение сведений о восстановительных ремонтах само по себе не вызывает возражений, но реальное получение этих сведений сопровождается зачастую непреодолимыми трудностями, связанными, как правило, с периодическими структурными реорганизациями предприятий, сопровождающимися потерей документации.
В этой связи, говоря о марке залитого в трансформатор масла, следует подразумевать некоторую базовую составляющую исходного масла с добавками целого букета товарного трансформаторного масла, произведенного в разные годы, разрешенного к доливке в данный тип трансформатора.
Это могут быть масла товарных марок ГК, Т-1500, Т-750, ТКп, ТАп, ТСп, ВГ, изготовленные по ГОСТ или ТУ в разные годы.
В период бурного развития энергетики прошлого века широко применялись импортные масла, которые также рекомендовались к смешиванию в любых соотношениях с маслами ТКп и ТСп. Эту специфическую особенность необходимо учитывать при оценке состояния трансформаторного масла.
Несмотря на то, что «Объемы и нормы испытаний электрооборудования» регламентируют в общей сложности 11 показателей качества эксплуатационных масел, это не позволяет однозначно определить тип масла [1].
В этой связи становится актуальной классификация многокомпонентного состава масла по типу методами УФ и видимой оптической абсорбционной спектроскопии [2]. Эти методы могут быть применены непосредственно в лабораториях энергопредприятий стандартными спектрофотометрами.
Задача облегчается и тем, что все марки трансформаторных масел относятся к разряду прозрачных жидкостей и не требуют применения органических растворителей, что позволяет использовать абсорбционную спектроскопию в видимом диапазоне для анализа масел.
На рис. 1 показано традиционное представление оптического спектра трансформаторных масел. Оптические спектры поглощения образцов трансформаторных масел получены с помощью двулучевого спектрофотометра СФ-56 (в диапазоне 190-1100 нм). Использовалась кварцевая кювета с длиной оптического пути 25 мм, интервалом регистрации и записи данных 1 нм.

Как видно из рис. 1, новые (свежие) масла имеют на длине волны L = 400 нм пропускание около 90 %. Пропускание более 80 % в свежих маслах наблюдается на длине волны L = 370-800 нм.
Для сравнения на рисунке представлен спектр вазелинового масла, который имеет высокую величину пропускания вследствие отсутствия ароматических соединений, но содержит заметное количество нафтеновых колец; парафиновая часть представляет собой в значительной степени боковые цепи [5].
Абсорбционный спектр в УФ и видимой областях
Рис. 1. Абсорбционный спектр в УФ и видимой областях спектра для различных марок (свежих) трансформаторных масел
В процессе эксплуатации изоляционные свойства трансформаторного масла ухудшаются. Старение и ухудшение свойств изоляционного масла обычно связывают с окислением. При появлении в масле кислорода и воды изоляционное масло окисляется даже при идеальных условиях. На состояние изоляционного масла также влияют загрязнения, появляющиеся от твердых материалов трансформатора, которые растворяются в масле. Реакции, происходящие в масле между нестабильными гидрокарбонатами, кислородом и другими катализаторами, такими как влажность, и с помощью таких ускорителей, как тепло, приводят к распаду (окислению) масла.
Цвет масла в процессе эксплуатации изменяется и поэтому может также характеризовать его качество. Свежее масло имеет обычно светло-желтый цвет. В процессе эксплуатации масло темнеет и приобретает темно-коричневую окраску. Изменение цвета масла происходит под влиянием его нагрева и загрязнения смолами и осадками.
На рис. 2 представлены оптические спектры эксплуатационных трансформаторных масел марки ТКп с различным значением кислотного числа. Оптические спектры пропускания получены с помощью двулучевого спектрофотометра
СФ-56. Образцы масел отобраны непосредственно из действующих трансформаторов 110 кВ. Кислотное число образцов определялось стандартным методом титрования спиртовым раствором гидроокиси калия (ГОСТ 5985-79).
Спектры пропускания трансформаторного масла марки ТКп
Рис. 2. Спектры пропускания трансформаторного масла марки ТКп с различным кислотным числом (длина оптического пути 25 мм)
В спектрах пропускания трансформаторного масла наблюдаются широкие линии с минимумами при L =916, 930 и 760 им (рис. 2), которые можно отнести к третьему и четвертому обертонам колебаний -СH2- и -СH3 групп [2].
Из спектров оптическою пропускания трансформаторных масел видно, что, несмотря на различия в оптическом пропускании трансформаторных масел с различным кислотным числом, характерные особенности спектров идентичны.
Отличительной особенностью представленных спектров является только уменьшение оптического пропускания Т вследствие увеличения степени окисления трансформаторного масла.
Возможной причиной такого изменения спектров трансформаторного масла является дисперсность системы. Дисперсные системы неоднородны по фазовому составу, т. е. содержат как растворенные вещества, так и взвешенные частицы различного происхождения (коллоидные или твердые). Таким образом, прохождение света через образец трансформаторного масла обусловлено как поглощением, так и рассеянием.
Спектр поглощения в диапазоне 250-700 нм является результатом электронного поглощения и может быть описан двумя параметрами, определяющими усредненную линию с наложенным на нее многополосным спектром многокомпонентных структур без доминантных составляющих, характерных для гауссового распределения ароматических молекул с малой молекулярной массой [3].
Спектральные характеристики трансформаторных масел в зонах видимой и УФ областей 300-600 нм имеют четко выраженную границу, отделяющую зону полного поглощения от зоны пропускания. Местоположение этой границы зависит от типа масла и степени его старения. По мере старения трансформаторного масла граница смещается в длинноволновую область.
Граница области пропускания становится более размытой вследствие многокомпонентности спектральных полос пропускания, а ее крутизна уменьшается.
Уравнение касательной к спектральной характеристике в зоне пропускания имеет вид
где Τ - коэффициент пропускания, %; λ - длина волны, нм; А - тангенс угла наклона касательной к оси λ (крутизна характеристики); В - постоянный коэффициент.
Отсюда получаем две количественные оценки трансформаторного масла: тангенс угла наклона касательной к оси λ (крутизна характеристики)

и длину волны отсечки (нм)

В процессе старения и изменения компонентного состава масла крутизна характеристики кривой поглощения падает, при этом происходит увеличение длины волны отсечки пропускания λ0 и уменьшение тангенса угла наклона tg(a). При однородном составе пробы крутизна характеристики кривой пропускания максимальна [4].
Покажем на примере результаты обработки спектров трансформаторных масел марки ТКп с различной степенью старения:
спектральная характеристика трансформаторного масла
Здесь 1 - спектральная характеристика трансформаторного масла марки ТКп с кислотным числом 0,0211; 2 - спектральная характеристика трансформаторного масла марки ТКп с кислотным числом 0,0624; 3,4- касательные к спектральным характеристикам в зоне пропускания.
Для спектральной характеристики 1 вычисляется тангенс угла наклона касательной к оси λ (крутизна характеристики):

и длина волны отсечки
Аналогично для спектральной характеристики 2 получим tg(a) = 0,6299, λο = 534 нм.
Сравнительный анализ показывает, что крутизна характеристики изменилась с 0,8382 до 0,6299, соответственно длина волны отсечки сместилась на 26 нм, что указывает на старение трансформаторного масла.
Таким образом, сравнивая текущие показатели tg(a) и λ0 с исходными, можно оценить интенсивность старения трансформаторного масла.
Анализ параметров позволяет также провести ориентировочную классификацию масел.

Рис. 3. К определению тангенса угла наклона tg(a) и длины волны отсечки Xq для различных марок масел
Так, например, для спектров трансформаторного масла различных марок, представленных на рис. 3, получены следующие значения тангенса угла наклона tg(a) и длины волны отсечки λ0:
для масла марки Вг λο = 389,8 нм tg(a) = 1,47, для масла марки Гк λ0 = 426,2 нм tg(a) = 1,53, для масла марки ТСп λ0 = 470,8 нм tg(a) = 1,57, для эксплуатационных масел марки ТКп λο = 507,5 нм tg(a) = 0,71. Промежуточные значения длины волны отсечки могут свидетельствовать о смешении двух различных марок масел.
Из представленных результатов видно, что оценка трансформаторных масел по двум параметрам позволяет оперативно выявить малейшие изменения, происходящие в масле, следовательно применять меры по замедлению процесса старения на ранних стадиях. Предложенные параметры дают возможность оценивать величину окисления трансформаторного масла.
Предложенная методика не требует специальных химических реактивов, загрязняющих окружающую среду, и сложных математических обработок результатов, а для проведения анализа достаточно не более 12 мл образца трансформаторного масла.

  1. Объем и нормы испытаний электрооборудования, РД 34.45-51.300-97. 6-е изд. М.: Изд-во НЦ ЭНАС, 1998.
  2. Валиуллина Д. М., Гарифулпин М. Ш, Козлов В. К. Аналитический обзор. Методы и средства диагностики изоляционных масел. Казань: ООО «ИЦ Энергопрогресс», 2003.
  3. Ehrenfreimd P., d'Hendecourt L, Joblin С. et al. // Astronomy and Astrophysics, 266, 429 (1992).
  4. Заявка на патент № 2009128280. Способ эксплуатационного контроля состояния трансформаторных масел.
  5. Ван-Нес К, Ван-Вестен X. Состав масляных фракций нефти и их анализ: пер. с англ. М.: Изд-во иностр. лит., 1954.