- БАЛАНС АКТИВНОЙ И РЕАКТИВНОЙ МОЩНОСТИ В ЭЛЕКТРИЧЕСКИХ СИСТЕМАХ
Все элементы электрической системы (станции, подстанции, линии электропередач, сети, приемники энергии) взаимосвязаны непрерывным процессом генерирования, передачи, распределения и потребления электрической энергии. Момент производства электроэнергии практически совпадает с моментом ее потребления, поэтому в любой момент времени мощность, отдаваемая генерирующими установками, должна быть точно равна мощности суммарной нагрузки системы, т. е. должен соблюдаться баланс генерируемых и потребляемых мощностей в системе. Невыполнение этого условия или, как говорят, нарушение баланса мощностей системы приводит к отклонению параметров ее режима.
Баланс активной мощности может поддерживаться только самой системой, т. е. генераторами системы.
Баланс реактивной мощности поддерживается не только системой, но и путем размещения генерирующих источников реактивной мощности (компенсирующих устройств) непосредственно на месте потребления электроэнергии. Это оправдано и техническими и экономическими соображениями, поскольку снижение передачи реактивной мощности по сетям приводит к снижению в них потерь энергии и повышению их пропускной способности.
Ориентировочно можно считать, что около двух третей реактивной мощности поступает потребителям от компенсирующих устройств и лишь одна треть от системы.
Балансу активной мощности сопутствует параметр режима— частота, а балансу реактивной мощности — напряжение (см. 1.3, 1.4).
2.3.1. Баланс активных мощностей
В электрической системе при любых режимах должно удовлетворяться уравнение баланса активных мощностей
(28)
где Рраб — суммарная активная мощность, вырабатываемая генераторами электростанций (рабочая мощность системы), МВт; Рн —суммарная активная мощность нагрузок системы, МВч;— суммарные потери активной мощности в системе (во всех звеньях от генераторов станций до потребителей энергии), МВт; Ра, — суммарная активная мощность собственных нужд электростанций, МВт; Рпотр — суммарная потребляемая активная мощность, МВт.
Потери активной мощности могут достигать 5... 15% or суммарной нагрузки системы, а расход на собственные нужды станций в зависимости от их типа составляет 1... 12%-
Нарушение баланса активных мощностей в системе вызывается изменением нагрузки, авариями, изменением производительности оборудования и другими причинами, поэтому система должна располагать большей мощностью, т. е. иметь резерв.
Полный резерв Рре3 активной мощности системы условно разделяется на эксплуатационный Ррез (непланируемый) и ремонтный Ррез2 (планируемый) резервы:
(29)
Полный резерв должен быть не менее 10% от рабочей активной мощности системы.
Установленная мощность системы включает в себя рабочую мощность и полный резерв:
(30)
Часть установленной мощности, состоящая из рабочей мощности и эксплуатационного резерва, выделяют как располагаемую мощность системы:
(31)
Поскольку с ростом нагрузки, резерв уменьшаться не должен, то необходимо в системе вводить дополнительные мощности, чтобы сохранить его требуемый уровень.
Изменение частоты, имеющее место при нарушении баланса мощности (28), приводит к изменению потребления активной и реактивной мощностей обобщенной нагрузкой системы. Характер изменения потребления зависит от состава потребителей системы. Так, например, система с преимущественно промышленной нагрузкой (Uн=110 кВ) имеет обобщенные типовые характеристики при изменении частоты, показанные на рис. 14. На рисунке виден практически линейный характер изменения потребления активной мощности при изменении частоты системы и явно выраженный нелинейный характер изменения потребления реактивной мощности, особенно при снижении частоты, когда потребление реактивной мощности резко возрастает.
Рис. 14
Снижение потребления активной мощности при уменьшении частоты вызывается снижением производительности рабочих механизмов, зависящей от их скорости, а существенный рост потребления реактивной мощности происходит из-за увеличения потерь реактивной мощности в индуктивных сопротивлениях ЛЭП, асинхронных двигателях и трансформаторах (увеличение намагничивающего тока).
Изменение выработки активной мощности в системе связано с регулированием частоты, которое в современных системах осуществляется автоматически. Эта задача обычно возлагается на одну либо несколько электростанций системы (см. 1.3). При тяжелых аварийных режимах, когда отключается значительная часть генераторного парка системы и баланс активной мощности резко нарушается, применяют автоматическую частотную разгрузку (отключают часть потребителей) для восстановления баланса. После восстановления режима работы системы вступает в действие частотное АПВ.
2.3.2. Баланс реактивных мощностей
Для нормальной работы электроприемников нужна и активная, и реактивная энергия, причем в любой момент времени суммарная генерируемая реактивная мощность в системе должна быть точно равна потребляемой реактивной мощности. Источниками реактивной мощности в системе являются не только генераторы электростанций, но также воздушные и кабельные ЛЭП, батареи конденсаторов, синхронные компенсаторы, синхронные двигатели, статические компенсирующие установки и др. Таким образом, баланс реактивных мощностей в системе записывается в виде:
(32)
где Qpаб — суммарная реактивная мощность, генерируемая всеми источниками системы (рабочая мощность), Мвар; Qr, Ол, Qk, Qkу — реактивные мощности, генерируемые соответственно генераторами электростанций, линиями электропередач (зарядная мощность), конденсаторными батареями, компенсирующими установками (синхронные компенсаторы, синхронные двигатели, статические компенсирующие установки и т. п.), Мвар;— соответственно суммарная реактивная мощность нагрузок системы, потерь реактивной мощности в системе и расход реактивной мощности на собственные нужды системы, Мвар; Q,10tp — суммарная потребляемая реактивная мощность, Мвар.
Уравнения баланса (28) и (32) включают в себя активную и реактивную мощности, вырабатываемые генераторами электростанций, которые связаны зависимостью
(33)
поэтому генерация реактивной мощности электростанциями зависит от числа и мощности работающих генераторов, обеспечивающих покрытие активной нагрузки системы. Принимая во внимание средний коэффициент мощности современных генераторов — 0,8 ... 0,9, можно сказать, что располагаемая реактивная мощность генераторов системы составляет 60...70% от их располагаемой активной мощности. Кроме того, потери реактивной мощности достигают 30...35% от выдаваемой в сеть. Это объясняется тем, что индуктивное сопротивление сети значительно выше активного и при передаче электроэнергии имеет место большое число трансформаций (3—4 и более). В результате суммарная потребность в реактивной мощности превышает располагаемую реактивную мощность генераторов системы, т. е. существует дефицит реактивной мощности, достигающий 10 ... 15% и более. Дефицит особенно проявляется в летние месяцы, когда па электростанциях часть машин выводится в ремонт.
При дефиците реактивной мощности в системе нарушается баланс (32). Чтобы «свести» баланс реактивных мощностей в системе устанавливают дополнительные источники реактивной мощности. Современные источники реактивной мощности выпускаются на напряжение до 110 кВ и с номинальной мощностью до 450 Мвар (СК — до 320 Мвар, 20 кВ; ТКУ — до 450 Мвар, 110 кВ; БК — до 93 Мвар, 110 кВ).
Нарушение баланса реактивной мощности приводит к отклонениям напряжения, при этом в разных узлах системы отклонения могут быть различными, в отличие от отклонений частоты, которые происходят одновременно во всей системе. Регулирование напряжения осуществляют регулированием реактивной мощности, причем это регулирование в разных точках системы может выполняться независимо. Как правило, это регулирование осуществляется таким образом, чтобы обеспечить минимум потерь мощности в сетях.
Изменение напряжения при нарушении баланса реактийной мощности вызывает изменение потребления нагрузкой системы и активной и реактивной мощности. На рис. 15 приведены характеристики обобщенной нагрузки системы (Uн= 110 кВ, нагрузка преимущественно промышленная),, показывающие, как изменяется потребление активной и реактивной мощностей при отклонениях напряжения. При снижении напряжения уменьшается потребление активной и более резко — реактивной мощностей, причем при снижении напряжения до 0,8UH и ниже потребление реактивной мощности начинает возрастать, возрастают потери напряжения в сети и возникает процесс лавинного снижения напряжения, лавина напряжения — это тяжелый аварийный режим, который предотвращается с помощью специальных мер (форсировкой возбуждения генераторов, синхронных двигателей и др.).
Рис. 15
При общем снижении напряжения в системе его восстановление возможно только при наличии достаточного резерва реактивной мощности системы. При местном снижении напряжения его регулирование осуществляют с помощью местных источников реактивной мощности, устанавливаемых на приемных подстанциях или на передающих концах питающих линий. Вопросы регулирования напряжения и реактивной мощности рассмотрены ранее (см. 1.4; 1.5; 1.6).