Фото и видео

Новости (архив)


Контакты

contact@forca.ru

Вот уже более 30 лет во многих передовых и технически развитых странах мира проводятся работы по овладению энергией термоядерного синтеза. Сущность термоядерной реакции, в которой может быть высвобождено колоссальное количество энергии, состоит в слиянии двух атомов (ионов) легких элементов (обычно ионов изотопов водорода — дейтерия и трития либо водорода и дейтерия). В результате образуется частица с массой, меньшей, чем суммарная масса исходных элементов, а высвобождающаяся энергия соответствует разности масс.

Реакция может быть осуществлена при весьма специфических условиях: температура исходного вещества должна быть около 108 К, т. е. оно находится в состоянии высокотемпературной плазмы; давление в плазме несколько сот МПа; время ее удержания не менее 1с. При использовании энергии реакции в промышленных целях эти условия должны создаваться циклически. Осуществить эти требования чрезвычайно сложно. В настоящее время видны два основных пути достижения поставленной цели: удержание плазмы мощным статическим магнитным полем или инерционное удержание, при котором топливо в виде малых порций нагревается и сжимается сконцентрированными лучами лазера или пучками электронов.

Прообраз термоядерной электростанции на основе реактора типа Токмак показан на рисунке. Основу реактора и блока электростанции представляет тороидальная камера, по оси которой в вакууме 2 концентрируется плазма 1, где и происходит термоядерная реакция. Удержание плазмы осуществляется мощным сверхпроводящим магнитом 3, разогрев - трансформатором 7.

Токмак
Принципиальная схема термоядерной электростанции на базе тора типа «Токмак»:
1 - дейтерий-тритиевая плазма; 2 - вакуумное пространство; 3 - сверхпроводящий магнит;
4 - бланкет; 5 - теплообменник первого контура; 6 - теплообменник второго контура;
7 - трансформатор разогрева плазмы

Рассматривается реакция (дейтерий + тритий). Если дейтерий может быть выделен из природной воды, то тритий получают искусственно, что требует больших затрат энергии и труда. Чтобы воспроизвести тритий, который расходуется в процессе реакции, в камере реактора сооружается бланкет из лития 4. Литий, облученный нейтронами в процессе реакции, частично образует гелий и тритий, который может быть выделен из лития и возвращен в реактор. Так может быть осуществлено его воспроизводство. Литий бланкета выполняет еще одну функцию - переносит тепло, образующееся при термоядерном синтезе. Будучи в жидком состоянии, он циркулирует через теплообменник 5 и отдает тепло промежуточному жидкометаллическому теплоносителю (например, калию), а тот, в свою очередь, нагревает воду в следующем теплообменнике 6, работающем подобно паровому котлу ТЭС или парогенератору АЭС. Рассмотренная схема дает лишь очень упрощенное представление об одном возможном пути создания станции такого типа.

Создание термоядерной электростанции поднимает ряд серьезных теоретических и практических проблем, требующих проведения сложных исследований, и поэтому окончательное овладение термоядерным синтезом является делом, может быть, не столь отдаленного, но все же будущего. Как показывает опыт, это одна из самых трудных технологических задач, за которую когда-либо бралось человечество. Однако в случае успеха будет обеспечено практически безграничное количество энергии.