Фото и видео

Новости (архив)


Контакты

contact@forca.ru

Содержание материала

  1. ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО

ИНДУКЦИОННЫХ СЧЕТЧИКОВ
Часть диска индукционного двухпоточного прибора
Рис. 1. Часть диска индукционного двухпоточного прибора.
Для измерения расхода электроэнергии в цепях переменного тока промышленной частоты применяются счетчики индукционного типа. Принцип действия этих счетчиков основан на взаимодействии магнитных потоков с индуктированными токами в подвижной части прибора. Подвижная часть выполнена в виде алюминиевого диска, укрепленного на оси. Если алюминиевый диск находится между двумя полюсами электромагнитов Л и В, по катушкам которых протекает переменный ток, то магнитные потоки Фд и Фв пронизывают этот диск и индуктируют в нем токи 1А и /в (рис. 1).
Ток 1А, взаимодействуя с магнитным потоком Фв, создает некоторое усилие. Второе усилие получается от взаимодействия тока 1В с магнитным потоком ФА. Образующийся в результате вращающий момент пропорционален величинам этих двух потоков и зависит от угла сдвига между ними.
На рис. 2 показаны устройство и схема включения однофазного индукционного счетчика. Счетчик состоит из двух электромагнитов 5 и 8, алюминиевого диска 1, укрепленного на оси 2, подпятника 3 и подшипника 4, которые служат опорами оси, постоянного тормозного магнита 7 и счетного механизма, связанного с осью зубчатой передачей (на рисунке не показан).
Обмотка электромагнита 5 включена в цепь параллельно, и его сердечник пронизывает магнитный поток Фи, пропорциональный напряжению сети U. Обмотка электромагнита 8 включена последовательно с нагрузкой, и его сердечник пронизывает магнитный поток СР*, пропорциональный току нагрузки I. Оба магнитных по
тока индуктируют в алюминиевом диске вихревые токи, которые, взаимодействуя с магнитными потоками, создают вращающий момент М, пропорциональный произведению этих потоков.
Для того чтобы счетчик измерял расход активной энергии, необходимо выполнить условие пропорциональности вращающего момента активной мощности, т. е.
М = K1IU cos ф = к1Р,
где К1 — коэффициент пропорциональности; ф — угол сдвига между током и напряжением.
Схема устройства идукционного счетчика
Рис. 2. Схема устройства идукционного счетчика.
Пропорциональность вращающего момента току нагрузки и напряжению сети обеспечивается, как было сказано выше. Пропорциональность вращающего момента cos ф обеспечивается созданием определенного угла сдвига между магнитными потоками. Для этой цели магнитный поток параллельного электромагнита расщепляется на два: рабочий и вспомогательный. Рабочий поток пересекает диск и замыкается. через противополюс, расположенный под диском. Вспомогательный поток замыкается через средний и боковые стержни электромагнита, не пересекая диска.
Для дополнительной подгонки угла сдвига служит регулятор 6. Он состоит из нескольких витков медной проволоки, намотанных на магнитопровод электромагнита 8 и замкнутых на петлю из никелиновой проволоки. Петля снабжена винтовым зажимом, перемещением которого и производится регулировка. Под действием вращающего момента диск счетчика придет во вращение. При этом возникает тормозной момент, действующий на диск счетчика. Этот момент создается взаимодействием потока Фт тормозного магнита с вихревыми токами, индуктированными в диске его полем. Так как поток
тормозного магнита неизменен, то этот момент пропорционален только частоте вращения диска.
Кроме того, два тормозных момента создаются потоками параллельного и последовательного электромагнитов. Для того чтобы результирующий тормозной момент, равный сумме трех указанных, как можно меньше зависел от потока Фг-, тормозной момент постоянного магнита выбирается значительно большим тормозного момента последовательного электромагнита.
При этом можно с достаточной точностью считать, что результирующий тормозной момент пропорционален только частоте вращения диска п, т. е. Мт = к2п, где к2— коэффициент пропорциональности.
При установившейся частоте вращения диска
М=МТ,
а следовательно, к\Р = КчП, откудап, т. е. угловая
скорость диска пропорциональна мощности Р цепи, а частота вращения диска пропорциональна израсходованной энергии. Следовательно, числом оборотов диска счетчика можно измерять израсходованную энергию. Комплекс деталей, состоящий из магнитопроводов и обмоток параллельной и последовательной цепи, называют вращающим элементом счетчика.
Счетный механизм представляет собой счетчик оборотов. Получивший преимущественное применение для электрических счетчиков роликовый счетный механизм (рис. 3) состоит в основном из зубчатой передачи, нескольких роликов с нанесенными на них цифрами от О до 9 и прикрывающего передачу и ролики алюминиевого щитка с вырезанными в нем окошками для отсчета измеряемой величины. Вращение подвижной части счетчика через систему шестерен передается счетному механизму. Полному обороту первого ролика соответствует поворот следующего за ним (справа налево) ролика только на одну десятую часть оборота. Третий ролик уже сделает одну десятую часть оборота при полном обороте второго и т. д. Чаще всего в роликовых счетных механизмах имеется пять роликов.
В зависимости от числа шестерен и их передаточных чисел единице, зарегистрированной счетным механизмом энергии, будет соответствовать определенная частота вращения подвижной части счетчика. Частота вращения подвижной части, которая вызывает изменение счетного механизма на единицу измеряемой величины, называется передаточным числом счетчика. Передаточное число обычно указывается на щитке счетчика. Например: 1 квт-ч — 450 об. диска.
Число часов работы счетчика при нормальной нагрузке, необходимое для полной смены всех цифр, называется емкостью счетного механизма.
Роликовый счетный механизм
Рис. 3. Роликовый счетный механизм.
Для учета электроэнергии в трехфазных трехпроводных цепях (без нулевого провода) применяются двухэлементные счетчики. Трехфазный двухэлементный счетчик состоит как бы из двух помещенных в один корпус однофазных счетчиков, вращающие элементы которых воздействуют на одну общую подвижную часть, соединенную со счетным механизмом (рис. 4). При этом вращающие моменты, созданные каждым элементом, складываются. Счетчик включен по схеме двух ваттметров (схема Арона). Результирующий вращающий момент пропорционален активной мощности трехфазной цепи. 

Для учета электроэнергии в четырехпроводных цепях (с нулевым проводом) применяются трехэлементные счетчики. Такие счетчики имеют три элемента, воздействующие либо на три диска (например, в счетчике СА4-ТЧ), либо на два диска (например, в счетчике СА4-И672М).

Рис. 5. Схема счетчика реактивной энергии СРЗ-И44.
Счетчики реактивной энергии по принципу действия и конструкции сходны со счетчиками активной энергии.

Рис. 4. Схема устройства трехфазного двухэлементного двухдискового счетчика.
Отличие их состоит в том, что суммарный вращающий момент пропорционален синусу угла между током и напряжением.
На рис. 5 приведена схема счетчика типа СРЗ, предназначенного для учета реактивной энергии в трехпроводной сети. Как видно из схемы, на параллельные обмотки подаются напряжения «чужих» фаз. В цепь параллельных обмоток включены добавочные сопротивления. Угол сдвига между рабочими магнитными потоками параллельной и последовательной цепей составляет 60°. В эксплуатационном отношении счетчики со сдвигом в 60° удобны тем, что схема их включения не. отличается от схемы включения счетчика активной энергии.
В счетчиках реактивной энергии типа СР4-ИТР параллельные обмотки включены так же, как и в счетчике типа СРЗ, но без добавочных сопротивлений (сдвиг 90°).
Каждый из последовательных электромагнитов имеет по две обмотки; основную и дополнительную. Дополнительная обмотка намотана в направлении, противоположном основной (рис. 6). Счетчики этого типа применяются как в трехпроводных, так и в четырехпроводных цепях трехфазного тока.
Существуют также трехэлементные счетчики реактивной энергии (СР4-И676) со сдвигом фаз потоков в 90°.
Схема счетчика реактивной энергии СР4-ИТР
Рис. 6. Схема счетчика реактивной энергии СР4-ИТР.
Эти счетчики являются наиболее рекомендуемыми для учета реактивной энергии в четырехпроводных цепях.
По способу включения в сеть счетчики разделяют на счетчики прямого включения (прямоточные), которые включаются без измерительных трансформаторов, и счетчики, включаемые через измерительные трансформаторы. Последние в свою очередь можно разделить на включаемые через измерительные трансформаторы с определенными коэффициентами трансформации и универсальные, т. е. включаемые через любые измерительные трансформаторы. Об определении расхода электроэнергии по показаниям счетчиков различных типов будет сказано ниже.
На щитках некоторых счетчиков имеется надпись «со стопором» или «обратный ход застопорен». Диск таких счетчиков может вращаться только в направлении, указанном стрелкой.
Допустимая погрешность счетчика определяет его класс точности. Для расчетного учета электроэнергии класс точности счетчиков прямого включения (без измерительных трансформаторов) должен быть для активной энергии не ниже 2,5, а для реактивной энергии не ниже 3. Для счетчиков, включенных через измерительные трансформаторы, класс точности должен быть для активной энергии не ниже 2,0, а для реактивной энергии—не ниже 3. Для присоединений большой мощности (10 Мет и выше) рекомендуется применять счетчики класса точности 1 и выше.
Укажем на расшифровку букв в обозначении типа счетчика:
С — счетчик; А — активной энергии; Р — реактивной энергии; 3 или 4 — для трехпроводной или четырехпроводной сети; У—универсальный; И — индукционной измерительной системы; П — прямоточный; М — модернизированный.
Пример: СА4У-И672М 5а 380в — счетчик активной энергии для включения в четырехпроводную сеть с линейным напряжением 380 в через любые трансформаторы тока.