Поиск по сайту
Начало >> Книги >> Архивы >> ­­­Электрическая часть электростанций

Оперативный ток на электрических станциях - ­­­Электрическая часть электростанций

Оглавление
­­­Электрическая часть электростанций
Сведения об электрических станциях
Компоновка тепловых и атомных электрических станций
Особенности компоновки гидроэлектростанций
Типы генераторов и их параметры
Системы охлаждения генераторов
Системы возбуждения
Гашение поля генератора
Параллельная работа генераторов
Нормальные режимы генераторов
Пусковые режимы генераторов
Допустимые перегрузки статора и ротора
Типы трансформаторов и их параметры
Охлаждение трансформаторов
Нагрузочная способность трансформаторов
Параллельная работа трансформаторов
Виды главных схем электрических соединений
Особенности главных схем теплоэлектроцентралей
Главные схемы гидроэлектрических и гидроаккумулирующих станций
Главные схемы атомных электрических станций
Главные схемы подстанций
Выбор главной схемы - требования
Выбор главной схемы - рекомендации
Выбор трансформаторов
Режимы нейтрали
Технико-экономическое сравнение вариантов схем
Главные схемы тепловых электростанций некоторых зарубежных стран
Собственные нужды электрических станций
Механизмы собственных нужд тепловых электрических станций
Механизмы собственных нужд гидроэлектростанций
Электродвигатели механизмов собственных нужд
Самозапуск электродвигателей собственных нужд
Схемы питания собственных нужд тепловых электростанций
Схемы питания собственных нужд гидроэлектростанций
Электрооборудование и механизмы собственных нужд АЭС
Особенности схем питания собственных нужд АЭС
Использование выбега турбогенераторов в режиме аварийного расхолаживания реактора АЭС
Выключатели высокого напряжения
Гашение дуги в выключателе постоянного тока
Гашение дуги в выключателе переменного тока
Восстановление электрической прочности
Восстанавливающееся напряжение
Собственная частота сетей высокого напряжения
Способы повышение отключающей способности выключателей
Особенности процессов отключения малых индуктивных и емкостных токов
Масляные выключатели с открытой дугой
Масляные выключатели с дугогасительными камерами
Малообъемные масляные выключатели
Воздушные выключатели
Компрессорные установки
Элегазовые выключатели
Автогазовые выключатели
Электромагнитные выключатели
Вакуумные выключатели
Выключатели нагрузки
Разъединители
Короткозамыкатели и отделители
Приводы выключателей и разъединителей
Общие сведения о ТН и ТТ
Измерительные трансформаторы напряжения
Конструкции измерительных трансформаторов напряжения
Измерительные трансформаторы тока
Измерительные трансформаторы постоянного тока
Оптико-электронные устройства
Выбор выключателей
Выбор разъединителей
Выбор реакторов
Выбор трансформаторов тока
Выбор трансформаторов напряжения
Выбор предохранителей
Выбор токоведущих частей распределительных устройств
Схемы вторичных соединений
Схемы с питанием цепей вторичных соединений
Детали схем вторичных соединений
Основная аппаратура цепей управления и сигнализации
Требования, предъявляемые к схемам дистанционного управления
Сигнализация
Дистанционное управление выключателями о помощью малогабаритных ключей
Дистанционное управление воздушными выключателями
Дистанционное управление выключателями при оперативном переменном токе
Дистанционное управление в установках низкого напряжения
Управление разъединителями
Монтажные схемы, маркировка, детали
Испытательные блоки
Провода и контрольные кабели вторичных цепей
Маркировка монтажных схем вторичных цепей
Контроль изоляции вторичных цепей
Оперативный ток на электрических станциях
Выбор аккумуляторных батарей для оперативного тока на электостанциях
Выбор зарядных агрегатов для оперативного тока на электостанциях
Распределение постоянного оперативного тока на электростанциях
Источники переменного оперативного тока на электростанциях
Конструкции распределительных устройств
Принципы выполнения распределительных устройств
Правила устройства и основные размеры конструкций РУ
Применение ОПН в конструкциях РУ
Выбор компоновки и конструкции РУ
Характерные конструкции распределительных устройств
Направления развития зарубежных конструкций РУ
Главный шит управления
Организация управления на мощных станциях блочного типа
АСУ в энергетике
Кабельные коммуникации и сооружения
Аккумуляторный блок
Вспомогательные устройства
Основные понятия о заземляющих устройствах
Опасность замыканий на землю. Роль защитного заземления
Удельное сопротивление грунта и воды
Конструкции защитных заземлений
Схема расчета заземления
Литература

Оперативный ток служит для питания вторичных устройств, к которым относятся оперативные цепи защиты, автоматики и телемеханики, аппаратуры дистанционного управления, аварийная и предупреждающая сигнализация и др. При нарушениях нормальной работы станции (подстанции) оперативный ток в некоторых случаях используется также для аварийного освещения и для электроснабжения особо ответственных механизмов собственных нужд.
От источников оперативного тока требуется повышенная надежность, поэтому их мощность должна быть вполне достаточной для надежного действия вторичных устройств при самых тяжелых авариях, а напряжение должно отличаться высокой стабильностью. Эти же требования высокой надежности приводят к необходимости повышенного резервирования источников оперативного тока и их распределительных сетей.

Источники постоянного оперативного тока

аккумуляторная батарея

Самым надежным источником питания оперативных цепей считаются аккумуляторные батареи. Большим преимуществом их является независимость от внешних условий, что позволяет обеспечивать работу вторичных устройств даже при полном исчезновении напряжения в основной сети станции (подстанции).
Другим немаловажным достоинством этого источника является способность выдерживать значительные кратковременные перегрузки, необходимость в которых возникает при наложении на нормальный режим аккумулятора толчковых токов включения приводов выключателей.
На электрических станциях (подстанциях) находят применение как свинцово-кислотные, так и железоникелевые щелочные аккумуляторы, однако технические характеристики кислотных лучше, чем щелочных. Начальное напряжение разряда свинцово-кислотных аккумуляторов составляет 2,1—2,2 В вместо 1,2—1,3 В у щелочных; разрядная характеристика Uvазр (т) у свинцовых более полога; к. п. д. их выше, чем у щелочных аккумуляторов. Щелочные железоникелевые аккумуляторы имеют меньший допустимый диапазон изменения напряжения элементов в режиме разряда. Кратность допустимой толчковой нагрузки у них меньше, чем у кислотных аккумуляторов.
Поэтому, несмотря на значительно меньшую стоимость по сравнению с кислотными (примерно вдвое), а также на некоторые

Тип аккумулятора


Характеристика

СК-1

С-1 и СК-1

Продолжительность разряда, ч

1

2

3

5

7,5

10

Энергия, А-ч

18,5

22

27

30

33

36

Разрядный ток, А

18,5

11

9

6

4,4

3,6

Наименьшее допускаемое напряжение в конце разряда, В

1,75

1,8

Примечания. 1. Энергия и разрядный ток для любого типового номера аккумулятора определяется умножением соответствующих значений для аккумуляторов СК-1 и С-1 на типовой номер аккумулятора, который получается при делении номинальной мощности (энергии) аккумулятора данного типа на номинальную энергию аккумулятора С-1 в ампер-часах, т. е. на 36.
С — стационарный аккумулятор для продолжительного режима разряда.
СК — стационарный аккумулятор для кратковременного режима разряда.
другие преимущества, к которым относятся большой срок службы, меньший саморазряд, большая стойкость при коротких замыканиях, отсутствие выделения вредных, опасных для окружающих паров, железоникелевые аккумуляторы находят на электрических станциях менее широкое применение, чем свинцовые.
Основными параметрами свинцовых и железоникелевых аккумуляторов являются энергия, напряжение и разрядный ток.
Под энергией аккумулятора понимают энергию (в ампер-часах), которую аккумулятор способен отдать во внешнюю сеть в режиме разряда. Так как энергия аккумулятора зависит от разрядного тока и, следовательно, от длительности разряда, номинальную энергию относят к определенному режиму разряда, обычно к десятичасовому (табл. 9-1).
Номинальным напряжением аккумулятора называют наименьшее допустимое напряжение на его зажимах в течение первого часа десятичасового разряда. Для всех типов свинцовых аккумуляторов его принимают равным 2 В, для железоникелевого 1,25 В (наименьшее допустимое напряжение в течение первого часа восьмичасового разряда).
Разрядный ток может быть различным в зависимости от режима разряда, однако он не может превышать пятикратного тока десятичасового разряда при длительных режимах (например, при одночасовом разряде) и двенадцатикратного того же тока при кратковременном (пятисекундном) разряде.

Разрядные характеристики аккумуляторов типа СК
Рис. 9-1. Разрядные характеристики аккумуляторов типа СК
Разрядные характеристики железоникелевых аккумуляторов при разряде
Рис. 9-2. Разрядные характеристики железоникелевых аккумуляторов при разряде различной продолжительности
Характер изменения напряжения на зажимах аккумулятора при различных режимах разряда приведен на рис. 9-1. Для сопоставления на рис. 9-2 приведены разрядные характеристики железоникелевых аккумуляторов.
На мощных электрических станциях и на крупных узловых подстанциях устанавливаются аккумуляторные батареи напряжением 110—220 В, а на небольших подстанциях напряжением 24— 48 В. В соответствии с [55] на станциях до 50 МВт устанавливается одна батарея 220 В, а на станциях большей мощности две такие батареи, причем одна батарея рассчитывается на полную нагрузку оперативных цепей и на 60 % мощности аварийного освещения, а другая на 100 % мощности аварийного освещения и на нагрузку одного масляного насоса турбины. При этом каждая из батарей должна обеспечить и толчковую нагрузку при включении приводов выключателей. На блочных станциях большой мощности для каждых одного-двух блоков устанавливают отдельную батарею, как правило, на напряжение 220 В.
На крупных узловых подстанциях напряжением 220 кВ и выше должны устанавливаться две одинаковые батареи 220 В, а на подстанциях 35—110 кВ с трансформаторами 5,6 MB-А и больше — одна батарея 220 или 110 В.
На подстанциях 35 кВ и ниже с трансформаторами мощностью меньше 5,6 MB-А обычно устанавливают одну батарею 24 В или питают оперативные цепи от источников переменного тока.
Существует несколько схем включения аккумуляторных батарей. На старых электроустановках можно встретить схемы заряд-разряд (рис. 9-3), при которой всю основную нагрузку длительно несет батарея, а зарядное устройство подключается только на время заряда разряженной батареи. Мощность зарядного устройства, таким образом, должна быть достаточной для одновременного заряда батареи и питания всей основной нагрузки. Однако в последнее время от этой схемы отказались, так как частые глубокие разряды батареи быстро изнашивают активную массу пластин аккумуляторов и усложняют эксплуатацию.
Схема аккумуляторной установки
Рис. 9.З. Схема аккумуляторной установки, работающей по методу «заряд— разряд»
Б — аккумуляторная батарея; PJ— Р2 — элементный коммутатор; 3.4 — зарядный агрегат
Сейчас применяют исключительно схему постоянного подзаряда (рис. 9-4), которая отличается от схемы заряд— разряд режимами работы батареи и наличием специального подзарядного агрегата. Подзарядный агрегат работает в этой схеме непрерывно, неся постоянную нагрузку, подключенную к шинам, и подзаряжая батарею небольшим током. Батарея принимает на себя только толчковую нагрузку, возникающую, например, при включении выключателей.
На рис. 9-4 можно видеть элементный коммутатор Р1— Р2, назначение которого — поддерживать постоянным напряжение на зажимах батареи. При отклонении напряжения от нормального элементный коммутатор подключает или отключает часть аккумуляторов, поддерживая напряжение на шинах постоянным. Так как скользящие контакты вносят известную ненадежность в работу схемы, а также имеют недостаточное быстродействие, в современных схемах применяются не элементные коммутаторы, а тиристорные зарядно-подзарядные устройства (выпрямительные агрегаты). При этом в нормальном режиме нагрузка питается от выпрямительного устройства, а при повышенной нагрузке тиристорное устройство практически мгновенно подключает к шинам дополнительные элементы.

Схема аккумуляторной установки, работающей по методу постоянного подзаряда
Рис. 9-4, Схема аккумуляторной установки, работающей по методу постоянного подзаряда
ПЗА  - подзарядный агрегат; Д  -  выпрямитель

Схема аккумуляторной установки с противоэлементами
Рис. 9-5. Схема аккумуляторной установки с противоэлементами. ПЭ — противоэлементы; Н — нагрузка
Существует также схема аккумуляторной установки, в которой часть нагрузки, нуждающаяся в регулировании напряжения, подключается к батарее через группу электролитических элементов, состоящих из стальных пластин, погруженных в раствор щелочи (едкого кали или натра). При прохождении тока через эти так называемые противоэлементы в них возникает реакция электролиза щелочного раствора, сопровождающаяся поглощением энергии и падением напряжения, не зависящим от тока. Таким образом, изменяя число включенных противозлементов, можно понижать напряжение на регулируемых шинах до нужного уровня (рис. 9-5).
Достоинствами схемы с противоэлементами являются отсутствие элементного коммутатора, уменьшение износа и увеличение срока службы основных аккумуляторов. Схема с противоэлементами известна давно, но широкого распространения не получила, по-видимому, из-за некоторой громоздкости и усложнения эксплуатации.



 
« Энергоснабжение сельскохозяйственных потребителей
Карта сайта + все метки | Контакты
© Электроэнергетика При перепечатке и цитировании активная гиперссылка на сайт обязательна.